本综述使用海洋双壳类crassostrea gigas来突出生活在动态潮间环境中的物种中的氧化还原反应和控制系统。潮间带每天面临和季节性环境变异性,包括温度,氧气,盐度和营养变化。增加人为压力可以将污染物和病原体作为其他应激源带来。令人惊讶的是,C。Gigas对大多数此类挑战表现出令人印象深刻的适应性。我们探讨了ROS的产生,抗氧化剂保护,氧化还原信号传导和代谢调整如何阐明氧化还原生物学在恶劣条件下如何支持牡蛎生存。评论提供了(i)Metazoan共享的氧化还原传感过程的简要摘要; (ii)概述C. gigas潮间带栖息地的独特特征以及该物种作为模型有机体的适用性; (iii)对C. gigas的氧化还原生物学的见解,包括ROS源,信号通路,ROS扫除系统和含硫醇的蛋白质;以及(IV)在双壳类研究中不发达的热门主题的示例,将氧化还原生物学与免疫代谢,生理和发育联系起来。鉴于其对环境变化的可塑性,C。Gigas是研究氧化还原生物学在适应恶劣栖息地的作用的宝贵模型,有可能为海洋和比较生物化学和生理学的基础研究提供新颖的见解。
用于低空遥感的 RPAS 技术和用于增强成像的微型传感器的蓬勃发展,导致了海洋生态应用的增加。然而,带有可见电磁波谱传感器的 RPAS 的普遍性可能会限制沿温带潮间带岩礁的生物海洋栖息地的精细测绘、监测和识别应用。在这里,我们使用低成本的 RPAS 结合多光谱传感器 (MicaSense® RedEdge™) 和基于对象的图像分析 (OBIA) 工作流程,在新西兰奥克兰怀特玛塔港制作了生物牡蛎礁的超高分辨率地图。结果表明,具有可见电磁波谱以外的光谱带逐渐增强了图像上的特征检测,并增加了在异质海洋生态系统中描绘目标特征的潜力。使用基于规则的分类技术提取目标特征,基于分割后的光谱特征,总体准确率为 83.9%,kappa 系数为 69.8%。使用附加光谱带可提高牡蛎礁栖息地测绘的光谱分辨率。高空间尺度监测和测绘浑浊的潮间带岩石礁带来了独特的挑战,但这些挑战可以通过在理想的气象和海洋条件下使用 RPAS 进行瞄准飞行来缓解。
低空遥感用 RPAS 技术和增强成像用微型传感器的蓬勃发展,推动了海洋生态应用的增加。然而,可见电磁波谱中传感器的 RPAS 的普遍性可能会限制沿温带潮间带岩礁的生物海洋栖息地的精细测绘、监测和识别应用。在这里,我们使用低成本 RPAS 结合多光谱传感器 (MicaSense® RedEdge™) 和基于对象的图像分析 (OBIA) 工作流程,在新西兰奥克兰怀特玛塔港制作生物牡蛎礁的超高分辨率地图。结果表明,可见电磁波谱以外的光谱带逐渐增强了图像上的特征检测,并增加了在异质海洋生态系统中描绘目标特征的潜力。使用基于规则的分类技术提取目标特征,基于分割后的光谱特征,总体准确率为 83.9%,kappa 系数为 69.8%。使用附加光谱带可提高牡蛎礁栖息地测绘的光谱分辨率。高空间尺度监测和测绘浑浊的潮间带岩礁带来了独特的挑战,但这些挑战可以通过在理想的气象和海洋条件下使用 RPAS 进行目标飞行来缓解。
园艺是致力于生产营养和高质量作物的重要全球部门。但是,其维持高收益率的能力取决于有效的受精和疾病控制方法,这引起了环境挑战,例如温室气体排放,富营养化以及广泛使用合成肥料和pesti cides。欧盟(EU)立法强烈主张合成投入的减少并促进替代策略(农场到叉子战略,2022年)。园艺的另一个问题是依赖泥炭作为主要生长媒介。虽然欧洲园艺主义者广泛偏爱泥炭泥炭,因为它具有可负担性和有利的特性,例如保留水和养分交换(Owen,2007),其使用及其不可再生本质的环境影响呈现出明显的劣势。为了减少泥炭依赖的替代媒体的追求不仅是环境的命令,而且还与欧盟立法保持一致(Owen,2007)。在追求循环经济时,农业食品行业具有宝贵的资源,有可能应对与可持续性有关的重大挑战。这些领域内的生物量生产可以被价值并重新用于必不可少的产品。例如,培养白蘑菇(agaricus bisporus)和牡蛎蘑菇(胸膜骨化剂),例如产生大量的收获后副产品,即用过的白色蘑菇堆(SMC)和花费的牡蛎蘑菇蜂房底物(SOS)。欧洲牡蛎蘑菇的生产被认为低于白色每公斤栽培的白色蘑菇,生成约2.5 - 5千克的SMC(Sample等,2001)。欧洲每年生产超过300万吨SMC(García-Delgado等,2013),对蘑菇行业提出了不断升级的环境关注,并强调了这种有机废物的可持续解决方案的紧迫性。
Bondad-Reantaso,M.G。等。(2007)Pearl Oyster Health:来自菲律宾,中国,波斯湾和红海的经验。 in:M.G。 Bondad-Reantaso,S.E。 McGladdery和F.C.J. berth。 Pearl Oyster Health Management:手册。 粮农组织渔业技术论文 503。 罗马:粮农组织,pp。 111–121。(2007)Pearl Oyster Health:来自菲律宾,中国,波斯湾和红海的经验。in:M.G。Bondad-Reantaso,S.E。McGladdery和F.C.J.berth。Pearl Oyster Health Management:手册。粮农组织渔业技术论文503。罗马:粮农组织,pp。111–121。
路易斯安那州牡蛎的管理和康复战略计划草案 - 2020年12月,简介路易斯安那州的巨大沿海湿地提供了充足的栖息地,在各种环境条件下,美国牡蛎(Crassostrea Virginica)蓬勃发展。路易斯安那州的牡蛎股是美国最大的牲畜之一,支持该州最大,最有价值的渔业之一,并为该州提供重要的生态服务。 路易斯安那州野生动植物和渔业部(LDWF)被控通过监视,保护和加强近170万英亩的公共牡蛎地区的牡蛎人口的规模和健康来管理该州的牡蛎资源。 牡蛎在河口生态系统中起着重要的生态作用。 牡蛎礁提供了其他无脊椎动物物种(例如藤壶,苔藓虫,外腹和海葵)所需的大部分硬基质。 许多无脊椎动物和鱼类还使用牡蛎礁作为庇护所和饲料栖息地。 牡蛎的过滤喂养活动提高了河口的水质,珊瑚礁也可以帮助稳定海岸线。 牡蛎产业历史上将路易斯安那州的公共牡蛎地区作为种子牡蛎的来源(长度不到三英寸),以移植到私人管理的牡蛎租赁,以增长到市场规模。 在路易斯安那州,私人实体租赁了约40万英亩的国有水底。 公共牡蛎区还可以产生各种市场大小的牡蛎(大于或等于三英寸的长度),这可能会直接带到市场。路易斯安那州的牡蛎股是美国最大的牲畜之一,支持该州最大,最有价值的渔业之一,并为该州提供重要的生态服务。路易斯安那州野生动植物和渔业部(LDWF)被控通过监视,保护和加强近170万英亩的公共牡蛎地区的牡蛎人口的规模和健康来管理该州的牡蛎资源。牡蛎在河口生态系统中起着重要的生态作用。牡蛎礁提供了其他无脊椎动物物种(例如藤壶,苔藓虫,外腹和海葵)所需的大部分硬基质。许多无脊椎动物和鱼类还使用牡蛎礁作为庇护所和饲料栖息地。牡蛎的过滤喂养活动提高了河口的水质,珊瑚礁也可以帮助稳定海岸线。牡蛎产业历史上将路易斯安那州的公共牡蛎地区作为种子牡蛎的来源(长度不到三英寸),以移植到私人管理的牡蛎租赁,以增长到市场规模。在路易斯安那州,私人实体租赁了约40万英亩的国有水底。公共牡蛎区还可以产生各种市场大小的牡蛎(大于或等于三英寸的长度),这可能会直接带到市场。路易斯安那州在牡蛎生产中领导着全国,这在很大程度上是由于这种公共/私人牡蛎生产系统。近年来,年度码头销售额已达到8500万美元,但是路易斯安那州公共牡蛎地区的牡蛎产量处于历史最低水平,需要对这一宝贵的经济和生态资源进行康复。通过2019年路易斯安那州海鲜未来项目(www.laseafoodfuture.com),包括牡蛎社区在内的商业海鲜行业,确定了可以可行的选择,这些选择可以可行,以适应不断变化的海岸。在沿海地区工作的物理空间也很高,有多个用户通常会争夺相同的水底。沿海保护和恢复局(CPRA)和石油和天然气行业有时与现有的牡蛎租赁直接存在空间冲突。在此类租赁生产力的地区,LDWF旨在在最大程度上支持和保护牡蛎租赁者,以享受其培养租赁水底的权利。因此,LDWF为路易斯安那州牡蛎资源的恢复和维护提供了这一途径,并为行业适应和发展提供了帮助,同时减少了沿海地区的冲突。这些举措需要实施和资金,以促进和维持路易斯安那州繁荣的牡蛎资源和行业,并允许最有效地利用沿海地区。为了增加成功的可能性,该计划至少需要五年才能实施本计划中规定的估计预算,该预算将在2021年开始全部资金。此外,人们认识到,某些计划将比其他计划更难解决,
站点描述:占地3.17英亩的地点在西部与南部的湾大道(Bay Avenue)接壤,南部与怀特(White)的溪(White)小溪(White's Creek),东部由牡蛎湾港(Oyster Bay Harbour)和北部的商业物业接壤。该网站目前是由全球指挥官Oyster Bay运营的主要储油设施(MOSF)。目前是由办公大楼,车库建筑物,地面储罐上方21个大容量(总计400,000加仑的容量)和一个加油架开发的。以前的土地用途包括锯木厂,住宅住房,煤矿和冰厂。现场重建包括MOSF关闭和计划的混合用途开发,包括商业和住宅。
幸运 81 1365 1 幸运 8 2 1366 1 幸运 F r . 1369 - 幸运 2 F r . 1370 - 维克 1441 12 KX 1555 9 KY 1556 9 KZ 1557 12 KV 1775 20 KS 1818 4 KT 1819 4 KU 1820 6 KW 1821 20 KM 1866 20 KN 1867 20 KQ 1869 18 TOQ 1 3090 10 TOQ 2 3091 20 TOQ 3 3092 18 TOQ 4 3093 20 转塔 3094 20 牡蛎 2 3095 8 PEAK 3096 12 KL 3158 20 牡蛎 1 3159 18 KO 3160 18 KP 3161 18 KR 3162 18 牡蛎 3 3163 6
特此通知,查尔斯顿区区工程师提议向南卡罗来纳州自然资源部 (SCDNR) 颁发通用许可证,授权在美国通航水域(第 10 部分水域)进行牡蛎礁修复和创建项目。通用许可证将授权排放疏浚和/或填充材料以及放置由 SCDNR 赞助的牡蛎礁修复和创建项目所需的结构,用于商业和/或休闲收获、生态目的和/或研究和实验目的。 *注:拟议通用许可证 SAC-2017-01776 的副本附在本公告中。本通知的目的是让所有相关方有机会在采取行动之前就拟议重新颁发上述通用许可证发表意见。有关重新颁发此通用许可证的书面声明将在以下时间之前送达本办公室
Isognomon (Lightfoot, 1786) 是一种牡蛎属,分布于世界各地的各种沿海生态系统中。它与其他双壳类动物一起,在海洋生态系统中发挥着重要的生态功能,为鱼类和无脊椎动物提供食物和栖息地、过滤水和保护海岸线。由于 Isognomon 牡蛎的表型特征多样或隐蔽,尤其是贝壳特征,因此对其进行分类可能具有挑战性。在本研究中,从印度尼西亚北苏拉威西省利库庞的红树林水域采集了两个具有不同贝壳特征的 Isognomon 牡蛎样本,并对其进行了分子分析以确定其身份。为此,使用线粒体细胞色素 C 氧化酶亚基 I (COI) 基因作为引物,并通过将它们与 GenBank 数据库进行比较来确定两个样本的遗传距离和系统发育位置。基本局部比对搜索工具 (BLAST) 显示两个样本属于 Isognomon ephippium ,相似性为 99.84%。使用 Tamura Nei 模型计算两个样本之间的遗传距离为 0.00,而 I. ephippium 与 Isognomon 属其他物种之间的遗传距离介于 0.00 至 0.14 之间。邻接 (NJ) 树分析的结果显示两个样本与 I. ephippium 聚在一起,将其分为两个不同的分支,在节点处的强自举值为 100。关键词:双壳纲,COI 基因,isognomon,牡蛎,北苏拉威西岛。引言