EPA 的“睦邻”提案将改善全国各城市和县的空气质量,保护人们免受可预防的过早死亡、哮喘发作和呼吸道疾病的困扰。EPA 预计,到 2026 年,拟议规则将防止约 1,000 例过早死亡、2,400 次住院和急诊就诊、130 万例哮喘症状和 470,000 天的缺课。这些公共卫生益处源于拟议的减少氮氧化物 (NO X ) 排放量,NO X 是臭氧“烟雾”形成的关键污染物,在臭氧季节,26 个州的电力部门排放量减少 29%,重工业排放量减少 15%。睦邻提案针对的是臭氧和形成臭氧的 NO X 排放,这些排放通常通过风跨越州界,而且距离很远。受上风州污染影响的下风区(城市、郊区和农村)将受益于该提案。该提案履行了 EPA 的《清洁空气法》义务,即在各州未能满足该法案的要求,制定和执行计划以减少威胁其下风向邻居空气质量的污染时,EPA 应采取行动。 ___________________________________________________________________________ 行动摘要 2022 年 2 月 28 日,美国环境保护署 (EPA) 提议大幅减少形成臭氧的 NO X 排放。这一行动将确保提案中涵盖的 26 个州通过减少污染来满足《清洁空气法》的“睦邻”要求,这些污染是下风向各州实现和维持 2015 年臭氧国家环境空气质量标准 (NAAQS) 的问题的重要原因。本提案中的污染减少措施不仅可以挽救生命并改善美国各地受雾霾影响社区的公共健康,而且对企业、工人和消费者来说也是具有成本效益且负担得起的。为了帮助实现 2015 年臭氧 NAAQS 的健康和环境效益,EPA 提议采取多种方法。
1 Fiocruz,健康发展中心(C.D.T.S.),国家科学技术研究所,用于被忽视的人口疾病(INCT-IDPN),里约热内卢21040-900,巴西RJ; guilherme.lechuga@cdts。fifocruz.br(G.C.L.); joaoprsc@id.uff.br(J.P.R.S.C.)2个微生物科,美国国家质量控制研究所(I.N.C.Q.S.),Fiocruz,Rio de Janeiro 21040-900,RJ,巴西; fellipe.cabral@incqs。finfocruz.br(f.o.c.);玛丽亚3联邦弗林宁斯大学生物学研究所分子和细胞生物学系,NITEROI 22040-036,RJ,RJ,巴西4蜂窝和超微结构实验室,Oswaldo Cruz Institute,Fiocruz,Rio de Janeiro 21040-900,RJ,RJ,Brazil; victor.midlej@ioc.fiocruz.br 5 Epidemiology and Molecular Systematic Laboratory, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil * Correspondence: karynercarvalho@cdts.fiocruz.br (K.R.); dsimone@cdts。fifocruz.br(s.g.d.-s.);电话。: +55-2138658240(K.R.); +55-2138658183(S.G.D.-S。)
关于合作者科学系列:合作者科学系列丛书于2013年启动。其目的是促进研究项目报告的归档和检索,主要是由美国支持的调查鱼类和野生动物服务(FWS),尤其是野生动植物和运动鱼修复计划。选择了在线格式,以立即访问FWS,州和部落管理机构,保护界以及整个公众的科学报告。本系列中的所有报告均经过与进行研究的机构和实体一致的同行审查过程。对于美国地质调查局作者,同行评审过程(http://www.usgs.gov/usgs-manual/500/502-3.html)还包括局在传播之前的批准官员的审查。提供这些报告的作者和/或机构/机构对其内容完全负责。FWS不提供这些报告的社论或技术审查。本系列报告中的评论和其他信件应针对报告作者或机构/机构。在大多数情况下,本系列发表的报告是以当前或修订的格式出版的,在同行评审的科学文献中。在科学文献发表之前进行进一步的同行审查或其他数据和/或分析后,可以修改报告中包含的数据的结果和解释。合作者科学系列得到了西弗吉尼亚州Shepherdstown国家保护培训中心FWS的支持和维护。101-2013。该系列依次编号为参考的出版年度,并从报告号FWS已将其他各种编号系统用于类似但现在停止的报告系列。从编号101对于当前系列而言,旨在避免与早期报告编号的混淆。使用合同的研究机构和机构,贸易,产品,行业或公司名称或产品或软件或模型(无论是否商业上)仅出于信息目的,并且不构成美国政府的认可。合同参考:本文件符合美国资助的研究报告要求鱼类和野生动物服务避难所(G15AC00021)。先前发布的文档,该文件在适用时会在其中一部分履行本合同的任何部分。(USGS IPDS#:IP-106157)。推荐引用:Brewer,S。K.,J。B. Mouser和R. van den Bussche。2020。使用环境DNA(EDNA)评估Ozark高地洞穴中的洞穴鱼和小龙虾种群的存在。美国内政部,鱼类和野生动物服务部,合作社科学系列FWS/CSS-135-2020,华盛顿特区
简介。在可见光和近红外 (NIR) 范围内具有等离子体特性的金属,例如金、银和铜,可用于光学、电子、传感和其他应用,目前备受关注 [1, 2]。重要的问题是等离子体特性的稳定性,这通常会限制某些金属的使用,因为它们具有化学反应性和可能产生杂散效应。用于等离子体的最常见材料是金,它具有出色的光学性能以及抗氧化性。金在等离子体中的局限性包括其价格高昂以及与微电子技术工艺不兼容。银由于光学损耗低而表现出优异的性能,也得到了广泛应用 [3-7],但通常被认为由于化学稳定性较低而吸引力较小,因此等离子体稳定性也较低 [8]。铜是另一种具有出色光学性能的金属。与金相比,它价格低廉,在可见光和近红外范围内的光学损耗较低。铜在等离子体应用中的优势已被充分发挥,例如在超低损耗铜等离子体波导和生物传感应用中 [9-13]。铜在暴露于环境大气时容易发生相对较快的表面氧化 [14]。在正常条件下,主要产物是 Cu 2 O,CuO 的贡献很小或没有。因此,要将 Cu 膜用于等离子体应用,需要保护结构表面免受氧化引起的降解。可以通过应用 SiO 2 、Al 2 O 3 甚至石墨烯的保护壳/涂层来实现 [10, 15]。在这项工作中,我们测试了一种简单的紫外臭氧处理方法,该方法可在铜膜上快速形成一层薄氧化层。该氧化层有效地保护了铜免受随后与氧化有关的等离子体特性降解的影响,这最近已在 Cu 纳米粒子中得到证实 [16]。我们对形成的氧化层进行了复杂的分析。我们预计,本文提出的结果将作为一种简单有效的方法,用于保留薄铜膜的等离子体特性,以用于非线性光学或传感应用。样品制作。使用 NEE-4000 电子束蒸发系统中的电子束蒸发沉积厚度为 28 nm 的铜膜。在室温下,将顶部覆盖有 2 nm 厚 SiO 2 层的干净硅晶片放置在电子束蒸发器的真空室中,压力为 3×10 7 Torr。作为沉积材料,使用纯度为 99.99% 的铜颗粒。沉积速率约为 2 Å/s。在一个周期内同时制造了 8 个相同的样品。引用的铜膜“厚度”是
摘要:ALD薄片的持续发展需要持续的改进,并改变适合不同实际应用的量身定制特性的材料。臭氧最近被确定为前体,比晚期介电薄膜ALDS中的替代氧化前体具有不同的优势。本研究报告了使用O 3源的氧化铝(Al 2 O 3)和Hafnia(HFO 2)形成,并比较获得的结构和电性能。与水基薄膜相比,对臭氧基材料进行的结构检查证明具有较低的空缺水平。增强的结构特性还导致有问题通过整体层掺入不同的掺杂剂。此外,对使用ALD Gate介电的MIS结构的电特性分析表明,基于臭氧的胶片的质量和良好的绝缘性能得到了改善。然而,需要用臭氧进一步优化ALD技术,因为相对较低的相对介电性表征了超细膜。
摘要:ALD薄片的持续发展需要持续的改进,并改变适合不同实际应用的量身定制特性的材料。臭氧最近被确定为前体,比晚期介电薄膜ALDS中的替代氧化前体具有不同的优势。本研究报告了使用O 3源的氧化铝(Al 2 O 3)和Hafnia(HFO 2)形成,并比较获得的结构和电性能。与水基薄膜相比,对臭氧基材料进行的结构检查证明具有较低的空缺水平。增强的结构特性还导致有问题通过整体层掺入不同的掺杂剂。此外,对使用ALD Gate介电的MIS结构的电特性分析表明,基于臭氧的胶片的质量和良好的绝缘性能得到了改善。然而,需要用臭氧进一步优化ALD技术,因为相对较低的相对介电性表征了超细膜。
1 Onco血液学,肿瘤学系,威尼托肿瘤学研究所IOV,IRCCS,31033 PADUA,意大利; Michele.gottardi@iov.veneto.it 2 Biosciences实验室,IRCCS ROMAGNA肿瘤研究所(IRST)“ Dino Amadori”,47014 Meldola(FC),意大利; giorgia.simonetti@irst.emr.it(g.s. ); antonella.padella@irst.emr.it(A.P。) 3乌丁大学医院医疗区(DAME)的血液学和移植中心部门,意大利乌丁市33100; Alessandra.sperotto@asufc.sanita.fvg.it 4血液学和细胞骨髓移植部(CBMT),波尔扎诺医院,意大利Bolzano 39100; Daviden@hotmail.it 5血液学单位,IRCCS ROMAGNA肿瘤研究所(IRST)“ Dino Amadori”,47014 Meldola(FC),意大利; marianna.nrata@irst.emr.it(M.N。 ); mariabenedetta.giannini@irst.emr.it(m.b.g。 ); gerardo.mounousca@irst.emr.it(g.m。 ); claudio.cerchione@irst.emr.it(c.c.) 6,拉文纳医院的血液学单位和Romagna移植网络,意大利拉文纳48121; francesco.lanza@auslromagna.it 7科学局,IRCCS ROMAGNA肿瘤研究所(IRST)“ Dino Amadori”,47014 Meldola(FC),意大利; giovanni.martinelli@irst.emr.it * corpspondence:andrea.ghellilluesnarnadirura@irst.emr.it†M.G. 和G.S. 同等贡献。 ‡C.C. 和G.M. 同等贡献。1 Onco血液学,肿瘤学系,威尼托肿瘤学研究所IOV,IRCCS,31033 PADUA,意大利; Michele.gottardi@iov.veneto.it 2 Biosciences实验室,IRCCS ROMAGNA肿瘤研究所(IRST)“ Dino Amadori”,47014 Meldola(FC),意大利; giorgia.simonetti@irst.emr.it(g.s.); antonella.padella@irst.emr.it(A.P。)3乌丁大学医院医疗区(DAME)的血液学和移植中心部门,意大利乌丁市33100; Alessandra.sperotto@asufc.sanita.fvg.it 4血液学和细胞骨髓移植部(CBMT),波尔扎诺医院,意大利Bolzano 39100; Daviden@hotmail.it 5血液学单位,IRCCS ROMAGNA肿瘤研究所(IRST)“ Dino Amadori”,47014 Meldola(FC),意大利; marianna.nrata@irst.emr.it(M.N。 ); mariabenedetta.giannini@irst.emr.it(m.b.g。 ); gerardo.mounousca@irst.emr.it(g.m。 ); claudio.cerchione@irst.emr.it(c.c.) 6,拉文纳医院的血液学单位和Romagna移植网络,意大利拉文纳48121; francesco.lanza@auslromagna.it 7科学局,IRCCS ROMAGNA肿瘤研究所(IRST)“ Dino Amadori”,47014 Meldola(FC),意大利; giovanni.martinelli@irst.emr.it * corpspondence:andrea.ghellilluesnarnadirura@irst.emr.it†M.G. 和G.S. 同等贡献。 ‡C.C. 和G.M. 同等贡献。3乌丁大学医院医疗区(DAME)的血液学和移植中心部门,意大利乌丁市33100; Alessandra.sperotto@asufc.sanita.fvg.it 4血液学和细胞骨髓移植部(CBMT),波尔扎诺医院,意大利Bolzano 39100; Daviden@hotmail.it 5血液学单位,IRCCS ROMAGNA肿瘤研究所(IRST)“ Dino Amadori”,47014 Meldola(FC),意大利; marianna.nrata@irst.emr.it(M.N。); mariabenedetta.giannini@irst.emr.it(m.b.g。); gerardo.mounousca@irst.emr.it(g.m。); claudio.cerchione@irst.emr.it(c.c.)6,拉文纳医院的血液学单位和Romagna移植网络,意大利拉文纳48121; francesco.lanza@auslromagna.it 7科学局,IRCCS ROMAGNA肿瘤研究所(IRST)“ Dino Amadori”,47014 Meldola(FC),意大利; giovanni.martinelli@irst.emr.it * corpspondence:andrea.ghellilluesnarnadirura@irst.emr.it†M.G.和G.S.同等贡献。‡C.C.和G.M.同等贡献。
利用数据实现安全:机器学习/人工智能实现及时航空安全 Nikunj C. Oza 博士、Chad Stephens 美国宇航局全系统安全项目 现代喷气式客机每飞行一次记录近 1GB 的原始数据,几乎是不到十年前投入使用的喷气式客机记录数据的两倍。鉴于这一宝贵的数据宝库,数据分析是一项非常重要的能力,它可以将这些数据转化为知识,从而帮助理解和实现安全操作。数据分析的实践涉及应用人工智能 (AI) 和机器学习 (ML) 等方法来获取见解并识别数据中的有意义关系。人工智能是一门专注于在基于计算机的代理中开发模拟人类智能的研究领域。ML 是人工智能的一个分支,涉及开发预测或决策算法,这些算法不是明确编程来预测或决策的,而是从代表过去预测或决策的数据中学习的。您可能体验过 ML 支持的功能,例如 Netflix 或 Amazon 中的自定义推荐。由于机器学习算法具有从过去的操作中学习的能力,因此虚拟助手(例如 Apple 的 Siri 或 Amazon 的 Alexa)以及部分或完全自动驾驶汽车成为可能。
作为一所高等教育机构,奥扎卡学院认识到多样性带来的力量。为教育体验带来差异和多样性可提高学生、教师、员工和社区的教育体验质量。学院承认多种形式的多样性,包括但不限于种族、教育理念和背景、性别、性取向、宗教、年龄、经济背景、政治哲学、地理起源、过去的经历以及身体、心理和感官能力。通过庆祝多样性,学院
每年,数十亿美元被投入到太空应用的研究和开发中,包括新系统、新技术和新材料。DLC(类金刚石碳)是一种很有前途的材料,但其使用面临技术障碍,因为它会被原子氧和臭氧严重腐蚀。在本研究中,SiOx-DLC 薄膜被沉积在 Ti-6Al-4V 基材上作为类金刚石碳 (DLC) 膜的顶层,以提高对原子氧和臭氧的耐腐蚀性,并满足低地球轨道 (LEO) 卫星的使用要求。使用氧等离子体评估了薄膜的耐腐蚀性,并研究了摩擦学和机械性能。SiOx-DLC 顶层将腐蚀速率降低了两个数量级,并将临界载荷从 16.2 ± 1.5 N 提高到 18.4 ± 0.4 N。