最近已显示:损害累积和SC-FTO型设备的故障仅用于短路脉冲比给定临界值更长的短路脉冲,此后,栅极裂口电流明显增加; 由于热机械应力和随后的温度相关的顶部金属化挤出,降解和失效是在顶部SIO 2中产生裂纹的结果[1]; 遵守临时偏置条件,由于金属路径在设备顶部区域融合效果,因此可以恢复功能[2]。在此,提出和讨论了一个新的结果,即直接在门和排水之间流动的泄漏电流的检测,也影响晶体管的短路性能和稳健性,为此表明,短路期间门源偏置的值也起着重要作用。
摘要:已经开发了许多方法来减少塑料废物的环境影响。已开发出新技术,以使这些废物的高温利用成为可能。确定了通过爆炸对塑料非常规处置的一种有希望的方法。流行的爆炸性ANFO(硝酸铵燃料油)是氧化剂(硝酸铵)和燃料(柴油燃料)的组成混合物。最佳成分为94.5%的氧化剂和5.5%的燃料 - 完全燃烧的保证。塑料具有化学成分,氧气平衡与燃油类似。可以通过添加塑料和使用它们所含能量来替换ANFO中的燃料共享。可以回收的能量量对于PE和PP(0.6的水平)和PS - 0.5。使用聚合物作为ANFO组件是有利的,出于经济原因 - 在爆炸过程中将消除塑料废物。关键字:能量潜力,废物塑料,Anfo
上下文。在亮度log l / l⊙⊙5.2的亮度log log-type恒星中显示弱的风,质量损失速率低于10-8 m⊙yr-1。这意味着,与他们更庞大,更发光的兄弟姐妹不同,它们的光电层不会受到恒星风的强烈影响。目标。一种混合非本地热力学平衡(非LTE)方法 - 在LTE假设下与非LTE线形成计算相结合的线主静水压模型大气 - 测试了晚期O-Type恒星的分析,其质量为量高达25 m 25 m。研究了20个大多数尖锐的O8型O8至O9.7型恒星的银河恒星,以及先前使用全非LTE模型大气的文献中研究的Luminosity类V和IV样品。方法。使用Kurucz的A TLAS 12代码计算的静液压和平行大气结构以及合成光谱以及非LTE线形成代码D ETAIL和S URFACE,这些代码an和S Urface(涉及了湍流压力对大气的影响)。高分辨率光谱的大气参数。通过考虑恒星进化轨道和Gaia早期数据版本3(EDR3)视差来得出基本恒星参数。星际红色的特征是从紫外线到MID-IR拟合光谱能量分布。结果。对于16个样本恒星的所有派生参数都可以实现高精度和精度(4个对象显示复合体格)。湍流压力效应对于定量分析而言很重要。有效温度确定为1–3%的不确定性水平,表面重力为0.05至0.10 dex,质量高于8%,半径高于10%,并且亮度通常超过20%的不确定性。丰度均具有0.05-0.10 DEX的不确定性,并且在0.03–0.05 DEX(1σ标准偏差)一般而言。总的来说,先前研究使用统一的光球加风(全)非LTE模型大气的结果,并具有更高的精度。对于元素丰度,这些改进最为明显,并且发现较小的微涡轮速度。在我们的光谱距离与盖亚(Gaia)之间达成了总体良好的一致性。GAIA EDR3基于LAC OB1B关联以及开放簇NGC 2244,IC 1805,NGC 457和IC 1396的距离被确定为副产品。派生的N/C与N/O的丰度比率紧密地遵循了恒星进化模型的预示。恒星上的两个显示出非常高的CNO加工材料的混合,并且似乎源于二元进化。