摘要:我们报告了一种新的多GPU从头算,hartree- fock/密度功能理论实现将整体化为开源量子相互作用计算内核(快速)程序。详细介绍了电子排斥积分的负载平衡算法和多个GPU之间的交换相关性。进行了多达四个GPU节点进行的基准测试研究,每个节点包含四个NVIDIA V100-SXM2型GPU表明,我们的实力能够实现出色的载荷平衡和高平行的效率。对于代表性的培养基到大蛋白/有机分子系统,观察到的平行官方率在Kohn- -假基质形成中保持在82%以上,而对于核梯度计算,则保持高于90%。在所有经过测试的情况下,NVIDIA A100,P100和K80平台上的加速度也已经实现了高于68%的平行官方,这为大规模的初始电子结构计算铺平了道路。
我们报告了两个无关的成年人,具有纯合(P1)或复合杂合(P2)私人损失 - v -rel reticuloenculoisois病毒性癌基因癌基因同源物B(relb)的功能变异。功能性RERB的缺乏会损害患者成纤维细胞中淋巴细胞毒素的NFKB2 mRNA和NF -κB2(P100/p52)蛋白的诱导。这些缺陷是通过用野生 - 型RELB互补DNA(cDNA)转导的。相比之下,RELB缺乏成纤维细胞对肿瘤坏死因子(TNF)或IL -1β通过规范NF -κB途径的反应仍然完好无损。p1和p2具有较低的幼稚CD4 +和CD8 + T细胞以及记忆B细胞的比例较低。此外,其幼稚的B细胞无法区分为免疫球蛋白G(IgG)或免疫球蛋白A(IgA) - 响应CD40L/IL -21的分泌细胞,以及IL -17A/F的发育 - 产生T细胞在体外受到严重损害。最后,即使在造血干细胞移植后,患者即使在造血干细胞移植后也会产生中和自身抗体(IFNS),这证明了T细胞选择中胸上皮细胞的持久功能障碍,并对某些自身抗原的中心耐受性。因此,遗传的人类RERB缺乏破坏了替代NF -κB途径,其基础A的基础A和B细胞免疫缺陷与I型IFN的中和自动抗体一起赋予了对病毒,细菌和真菌感染的倾向。
不同神经系统疾病引起的脑部异常状况影响着全世界的许多人。这些异常情况之一是肌萎缩侧索硬化症 (ALS)。 ALS 是一种俗称运动神经元病的疾病,它因脑干区域运动神经细胞受损而导致进行性身体障碍。大脑感知外界刺激,通过注意机制从大量的感知刺激中选取相关的刺激。注意力是当各种类型的信息、情绪和思想等活动集中在一个区域并由大脑在所需的时间内选择相关刺激时发生的认知过程。脑电图(EEG)在测量和分析大脑注意力机制中发生的此类活动方面具有重要地位。注意力分析的最新研究集中在事件相关电位 (ERP) 信号上。 EIP 信号是小幅度信号,其中包含 P100、N200、P300 和 N400 等在 EEG 信号中不太明显的成分。因此,为了获得 EIP 信号,必须重复目标刺激并多次进行 EEG 记录。 EEP 信号是通过对记录的目标刺激的 EEG 信号进行平均而获得的。研究的目的是从 ALS 患者和健康个体的 ERP 信号中获取一些特征,并使用 k-均值聚类方法检查对视觉刺激的注意力的分析。使用K均值聚类法进行分析的结果显示,数据被分为2个聚类,计算出最高成功率为77.78%。
尽管磁共振成像 (MRI) 等诊断成像技术的进步使人们对阿尔茨海默病 (AD) 的诊断和治疗有了更深入的了解,但医疗专业人员仍然需要分析图像,这是一个耗时且容易出错的过程。借助神经网络模型,可以更准确、更有效地做出诊断。在本研究中,我们比较了三种著名的基于 CNN 的算法(AlexNet、Faster R-CNN 和 YOLOv4)的性能,以确定哪一种算法在对 AD 患者的脑部 MRI 扫描进行多类分类时最准确。所使用的数据集来自 Kaggle,包含 6400 个训练和测试 MRI 图像,分为四个类别(非痴呆、非常轻度痴呆、轻度痴呆和中度痴呆)。中度痴呆类别的代表性极低。为了获得更准确的结果,通过数据增强将图像添加到该类别中。实验是使用 Google Colab 的 Tesla P100 GPU 进行的。迁移学习应用于所有三个预训练模型,并根据各自的参数调整数据集。增强后,AlexNet 具有最高的 mAP(平均准确率),100% 的时间检测到感兴趣的对象,而 YOLOv4 和 Faster R-CNN 的 mAP 分别为 84% 和 99%。然而,YOLOv4 在混淆矩阵上表现最佳,尤其是对于 ModerateDemented 图像。正如我们的实验所揭示的,像 YOLOv4 这样的单阶段检测器比像 Faster R-CNN 这样的两阶段检测器更快、更准确。我们的研究成功实现了这些模型,并为医学图像诊断做出了宝贵贡献,为未来的研究和开发开辟了道路。
提高处理器和加速器的每成本绩效比以往任何时候都变得更具挑战性,导致摩尔定律的减慢[22]。这种慢速下降的原因是过渡到更先进的技术节点[19]时的设计和制造成本,以及由于IO驱动器,模拟电路的缩放限制以及最近的静态随机访问记忆(SRAM)而导致此过渡的重新转换。针对这些挑战的有前途的解决方案是2.5D集成,其中多个称为chiplets的硅死模被整合到同一软件包中。可以将单个芯片设计重复使用以降低每芯片的设计成本的事实。此外,由于2.5D集成允许将不同技术内置的异质芯片集成到同一包装中,因此只有可以充分利用技术扩展的组件才能以高级和昂贵的技术节点制造。达到缩放限制的组件是成熟的低成本技术制造的。由于其经济利益,2.5D整合将其进入行业领先的公司的产品,例如NVIDIA的P100 GPU [17](仅用于高频带宽度内存(HBM))和AMD的EPYC和Ryzen CPU [23]。2.5D堆叠芯片的设计空间很大。One can decide between different packaging options [ 18 , 21 , 27 , 29 ], chiplet counts and sizes [ 9 ], chiplet placements [ 13 ], die-to-die (D2D) link imple- mentations [ 7 , 24 ] and protocols [ 1 , 3 ], inter-chiplet interconnect (ICI) topologies [ 4 , 14 , 16 , 25 , 26 ], and many more factors.更重要的是,有许多感兴趣的指标,例如面积要求,功耗,热能性能以及芯片的制造成本,或ICI的潜伏期和吞吐量。
提高处理器和加速器的性能成本比以往更具挑战性,这导致摩尔定律的减速 [22]。减速的原因在于过渡到更先进的技术节点时设计和制造成本呈指数级增长 [19],同时由于 I/O 驱动器、模拟电路以及最近的静态随机存取存储器 (SRAM) 的扩展限制,这种过渡的收益不断递减。2.5D 集成是解决这些挑战的一个有前途的解决方案,其中将多个称为小芯片的硅片集成到同一封装中。单个小芯片设计可用于多种产品,这降低了每个芯片的设计成本。此外,由于 2.5D 集成允许将采用不同技术构建的异构小芯片集成到同一封装中,因此只有能够充分利用技术扩展的组件才会采用先进且昂贵的技术节点制造。已经达到扩展极限的组件则采用成熟的低成本技术制造。由于其经济效益,2.5D 集成已应用于行业领先公司的产品中,例如 NVIDIA 的 P100 GPU [ 17 ](仅适用于高带宽内存 (HBM))和 AMD 的 EPYC 和 Ryzen CPU [23]。2.5D 堆叠芯片的设计空间巨大。人们可以在不同的封装选项[18、21、27、29]、芯片数量和尺寸[9]、芯片放置位置[13]、芯片到芯片 (D2D) 链路实现[7、24]和协议[1、3]、芯片间互连 (ICI) 拓扑[4、14、16、25、26]以及其他许多因素之间进行选择。此外,还有许多不同的相关指标,例如芯片的面积要求、功耗、热性能和制造成本,或 ICI 的延迟和吞吐量。
引言:CC趋化因子受体5(CCR5)及NF-κB信号通路在炎症性肠病(IBD)的病理生理中起重要作用。前期我们合成了两条特异性与CCR5第一和第二个胞外环(分别为ECL1和ECL2)结合的多肽(GH肽和HY肽),并初步发现这两条肽对结肠炎有抑制作用。但这两条肽调控三硝基苯磺酸(TNBS)诱导的大鼠结肠炎的具体机制尚不清楚。本研究旨在进一步探讨CCR5结合肽在大鼠结肠炎中的作用及机制。材料与方法:用5%TNBS诱导实验性结肠炎。CCR5拮抗肽每天静脉注射一次,持续一周。通过组织学观察、实时定量PCR、Western印迹和相关性分析等方法观察CCR5结合肽对炎症细胞浸润和NF- κ B信号通路的影响。结果:给予GH和HY肽可减轻实验性结肠炎黏膜损伤,减少中性粒细胞、淋巴细胞和巨噬细胞的浸润(p < 0.05)。给予GH和HY肽后,NF- κ B相关基因p105、p100、IKK和TNF- α的表达降低(p < 0.01),TNF- α的蛋白水平以及IKK、I κ B α和p65的磷酸化也受到抑制。此外,CCR5拮抗肽可抑制p65的核转位。 Spear-man相关性分析显示炎症细胞的浸润与NF- κ B通路有显著相关性。结论:CCR5的ECL1和ECL2特异性结合拮抗肽通过调控NF- κ B信号通路抑制TNBS诱导的Sprague-Dawley大鼠结肠炎结肠黏膜中性粒细胞、淋巴细胞和巨噬细胞的浸润。
2020年11月每年在美国与玻璃碰撞的近十亿只鸟类大多数人认为与玻璃的鸟类碰撞是一种城市现象,涉及高大的镜像玻璃摩天大楼,但现实是,有56%的碰撞死亡率发生在低层建筑物(即1到四个故事)(即,在城市和农村住所中为44%,在高层建筑物中<1%(损失eT eT eT e et and and。2014)。许多政府设施和庇护游客中心符合大多数鸟类碰撞所涉及的建筑物的描述。幸运的是,现有建筑物可用于低成本,有吸引力的玻璃处理,而新的建筑物和改建可以结合鸟类安全的建筑物设计和专用玻璃。许多鸟类安全措施同时降低能源成本。最近的研究量化了北美的鸟类种群在过去的50年中已有近30亿只鸟类下降,应得到联邦机构的强烈反应,并且对有形行动的重点越来越重视,从而导致可衡量的保护结果,例如减少与玻璃的鸟类碰撞。最大程度地减少与玻璃碰撞的碰撞与116-100 - 内政部,环境和相关机构拨款的2020年法案;政府服务管理局(GSA)P100公共建筑服务的设施标准;并且对鸟类种群的关注不断增加。2020年6月,众议院通过了H.R.2,《鸟类安全建筑物法》,该法规定了由GSA管理的所有公共建筑以鸟类友好的方式设计或更改。能源和环境设计领域的领导地位(LEED)承认通过相关的信用来承认鸟类友好的设计和相关措施的重要性。此外,采取措施减少与玻璃碰撞的步骤支持13186年行政命令的意图:联邦机构的责任保护迁徙鸟类。鸟类看不到透明或反射玻璃作为障碍。玻璃产生了清晰空域的致命幻想。大部分碰撞发生在鸟类可以看到玻璃中的景观反射的那一天(例如,云,天空,植被或地面);或鸟类通过玻璃看到感知到的栖息地(例如,建筑物内的植物或植被)。当春季和秋季鸟类迁徙期间发生恶劣的天气时,鸟类可能会被照明设施吸引。导致碰撞,夹带,过多的能量消耗,疲惫以及偶尔大规模的夜间死亡事件。
通过创造就业机会和增加收入,确保在更广泛的资产分配方面实现更公平的发展,从而改善贫困和边缘化群体的福祉”(Jeppesen 2005,463)。在菲律宾,政府通过其《2017-2022 年菲律宾发展计划》,将中小微企业纳入其在工业和服务业中获取经济机会的成果之一。这种承认可以追溯到 1991 年,当时通过了第 6977 号共和国法案或《小企业大宪章》,该法案承认“中小型企业具有创造更多就业机会和经济增长的潜力,因此可以帮助国家建立自给自足的工业基础。” 2013 年,第 10644 号共和国法案宣布,国家的政策是“通过鼓励建立微型、小型和中型企业(MSMEs)来促进当地就业、生产和贸易,从而促进国家发展、推动包容性增长和减少贫困”。政府对中小微型企业的认可很大程度上是基于该行业对经济的影响。据菲律宾统计局称,2016 年,该行业由资本低于 1 亿比索和/或员工少于 200 人的公司组成,雇用了 488 万人。这占所有类型商业机构创造的总就业岗位的 63%。2014 年,中小微型企业贡献了 35.7% 的总增加值和 25% 的出口收入。制造业拥有 115,748 家中小微型企业,雇用了 760,416 人,占总就业人数的 16.1%。虽然制造业不是最大的行业,但由于其出口潜力,它被视为具有最大的升级潜力,并且具有最大的长期增值贡献。鉴于中小微型企业对菲律宾经济的影响,它们的增长和扩张具有战略重要性。政府机构一直在实施计划,通过低息贷款和共享服务设施提供技术和融资,或通过推广计划或咨询公司转让技术知识,帮助中小微型企业发挥潜力。科技部 (DOST) 的出口促进生产力推广 (MPEX) 计划,更名为制造业生产力推广计划,就是这些政府举措之一。该计划由科技部技术应用和促进研究所 (TAPI) 于 1991 年发起,旨在促进制造企业的生产力提高,使其产品在全球市场的价格和质量上更具竞争力
