数据或通过插值观察到的测量数据来计算。在配电系统中,伪测量可以从智能电表数据、基于光伏 (PV) 辐照度或风速预测模型的分布式能源发电中获得。在 [4] 中,研究了一种基于博弈论的数据驱动技术,目的是在配电系统状态估计 (DSSE) 中生成伪测量。开发了并行机器学习模型来学习负载模式,然后生成准确的有功功率伪测量。出于同一目的,在 [5] 中,实现了一种基于频率的聚类算法,该算法确定负载模式并估算每日能耗。另一方面,使用概率数据驱动方法为未测量的 PV 系统生成时间序列伪测量 [6]。除了利用来自丰富数据的伪测量来改进电网监控之外,配电系统运营商 (DSO) 还将受益于能够以有限的传感预测系统状态的方法。[7]–[10] 提出了一种结合预测和状态估计模型的估计方法。这些方法提出了数据驱动模型,这些模型依赖于最小均方估计和贝叶斯估计。优点是这些方法不需要可观测性或冗余测量。最近,[10] 中的作者提出了一种基于深度学习的贝叶斯状态估计方法,用于不可观测的配电网。数据驱动技术为提高配电系统中的电网可观测性提供了一种非常有前途的解决方案。受这些方法的启发,我们提出了一种具有有限感知的数据驱动状态估计来解决 DSO 面临的问题。在 [11] 中,提出了一种称为物理感知神经网络 (PAWNN) 模型的方法。其思想是将配电系统的物理连接嵌入神经网络模型中;然而,模型中连续层之间的连接保持不变,这可能导致不必要的连接。为此,本文提出了修剪的物理感知神经网络 (P2N2)。图 1 显示了所提出方法的图形摘要。首先,使用设置 Monte Carlo 模拟
