嘌呤受体 P2X 配体门控离子通道 7 型 (P2X7R) 是一种三磷酸腺苷 (ATP) 门控离子通道。1-3 P2X7R 广泛存在于身体几乎所有组织和器官中,并在免疫、外周和中枢神经系统中高度表达,因此该受体在健康和疾病中发挥着重要作用。4-6 P2X7R 的过度表达与许多下游事件有关,以细胞特异性的方式进行,包括炎症、ATP 介导的细胞增殖和死亡、代谢事件和吞噬作用,并与多种炎症、免疫、癌症、神经、肌肉骨骼和心血管疾病有关。7-12 P2X7R 是一个有吸引力的治疗靶点,许多 P2X7R 拮抗剂已被开发用于治疗与 P2X7R 相关的疾病,如炎症、感染、神经、癌症和心脏疾病。 13-17 因此,P2X7R 已成为一个有趣的分子成像靶点,因为成像剂的开发与药物开发过程同步进行。18 先进的生物医学成像技术正电子发射断层扫描 (PET) 和单光子发射计算机断层扫描 (SPECT) 是两种有前途的分子成像方式,
摘要。P2X7嘌呤能受体(P2X7R)是一种非选择性的阳离子通道,该通道被高水平的三磷酸腺苷激活,通常存在于严重条件下。这种嘌呤能受体的激活与各种疾病状态的发展密切相关,包括炎症和神经退行性疾病,骨科疾病和癌症类型。积累的证据表明,P2X7R在各种心脏病的发展中起着至关重要的作用。例如,P2X7RS的激活可以通过释放内源性心脏保护物质来减轻心肌缺血 - 再灌注损伤。与这些发现相反,P2X7R的激活可以通过诱导炎症反应来促进急性心肌梗塞和肌肉炎的发展。这些受体的激活还可以促进不同类型的心肌病的发展,包括糖尿病心肌病,扩张性心肌病和肥大性心肌病,通过诱导心脏肥大,纤维化和凋亡。值得注意的是,抑制P2X7R可以改善急性心肌梗死后心脏结构和功能异常,心肌炎后炎症反应减少以及心肌病过程的衰减。此外,最近的证据表明,P2X7RS在感染冠状病毒疾病的患者中高度活跃(Covid -19)。在19.19中P2X7RS的过度激活可能通过激活多种信号通路引起严重的心肌损伤。本研究回顾了P2X7R在心脏功能障碍和
P2X7受体(P2X7R),一种由三磷酸腺苷(ATP)调节的非选择性阳离子通道,在中枢神经系统中定位于小胶质细胞,星形胶质细胞,少突胶质细胞和神经元,在微胶质细胞中具有最令人难以置信的丰富性。p2x7r在各种信号通路中参与,从事免疫反应,神经递质的释放,氧化应激,细胞分裂和程序性细胞死亡。当神经退行性疾病导致神经元细胞凋亡和坏死时,ATP激活了P2X7R。这种激活诱导了生物活性分子的释放,例如促炎性细胞因子,趋化因子,蛋白酶,活性氧和兴奋性毒性谷氨酸/ATP。随后,这会导致神经素流体,从而加剧了神经元受累。P2X7R对于神经退行性疾病的发展至关重要。这意味着它具有作为药物靶标的潜力,可以使用能够越过血脑屏障的P2X7R拮抗剂进行治疗。本综述将全面,客观地讨论有关P2X7R基因,其结构特征,功能特性,信号通路及其在神经退行性疾病和可能的疗法中的作用的最新研究突破。
2 型糖尿病 (T2DM) 是一种以高血糖为特征的慢性代谢性疾病,由遗传、生活方式和环境因素的复杂相互作用引起 [ 1 , 2 ]。这种多因素和多基因疾病常常导致严重的并发症,包括肾病、视网膜病变、周围神经病变、冠状动脉疾病 (CAD)、外周动脉疾病 (PAD) 和缺血性中风 [ 3 ]。值得注意的是,双胞胎家族研究表明个体之间并发症的发生率存在显著差异,特别是有糖尿病相关并发症家族史和无糖尿病相关并发症家族史的人之间 [ 4 , 5 ]。这些观察结果强调了基因分析在预测个体患 2 型糖尿病及其相关并发症风险方面的潜力,从而实现针对个体的精准医疗。迄今为止,已发现了许多影响 2 型糖尿病易感性及其并发症的风险位点,但仍有许多未被发现 [ 6 ]。其中,嘌呤能 P2X7 受体(P2X7R)是一种在多种组织中表达的 eATP 门控离子通道,已成为一个重要的候选者 [7]。多项研究表明,P2X7R 在胰腺 β 细胞增殖、胰岛素分泌和参与 2 型糖尿病发病机制中起调节作用 [8,9]。此外,鉴于炎症是组织和器官损伤的主要机制,也受 P2X7R 的影响,延伸到多种 2 型糖尿病并发症 [10,11]。P2X7R 基因具有高度多态性,许多单核苷酸多态性 (SNP) 影响其表达和功能 [9,12]。全基因组关联研究 (GWAS) 已确定了参与 2 型糖尿病发病机制的基因组区域,这些多态性可能增加患 2 型糖尿病的风险 [13]。然而,P2X7 多态性与 2 型糖尿病易感性之间的具体关联尚未被证实。因此,本研究旨在研究 P2X7 SNP 与 2 型糖尿病易感性和糖尿病并发症发展之间的关联。我们的目标是填补现有的知识空白,并有助于开发可以减缓 2 型糖尿病发病和进展的有针对性的干预措施。
这篇早期版本的文章已经过同行评审和接受,但尚未通过构图和复制过程。最终版本的样式或格式可能会略有不同,并且将包含指向任何扩展数据的链接。
1。国际嘌呤能信号联合研究中心,针灸学院和图娜,成都中医大学,中国成都。2。英国曼彻斯特曼彻斯特大学生物学,医学与健康学院。 3。 爱尔兰皇家外科医学院皇家外科医生学院生理学与医学物理系,爱尔兰都柏林。 4。 Futureneuro,爱尔兰科学基金会慢性和罕见神经病研究中心,爱尔兰皇家外科医生,医学与健康科学学院,爱尔兰都柏林。 5。 中国成都四川省的针灸和计时生物学主要实验室。 6。 中国成都中药大学卫生与康复学院。 7。 Rudolf Boehm药理学与毒理学研究所,德国莱比锡大学,德国。英国曼彻斯特曼彻斯特大学生物学,医学与健康学院。3。爱尔兰皇家外科医学院皇家外科医生学院生理学与医学物理系,爱尔兰都柏林。4。Futureneuro,爱尔兰科学基金会慢性和罕见神经病研究中心,爱尔兰皇家外科医生,医学与健康科学学院,爱尔兰都柏林。5。中国成都四川省的针灸和计时生物学主要实验室。 6。 中国成都中药大学卫生与康复学院。 7。 Rudolf Boehm药理学与毒理学研究所,德国莱比锡大学,德国。中国成都四川省的针灸和计时生物学主要实验室。6。中国成都中药大学卫生与康复学院。 7。 Rudolf Boehm药理学与毒理学研究所,德国莱比锡大学,德国。中国成都中药大学卫生与康复学院。7。Rudolf Boehm药理学与毒理学研究所,德国莱比锡大学,德国。Rudolf Boehm药理学与毒理学研究所,德国莱比锡大学,德国。
体育活动是一种重要的生活方式,对身体健康有积极影响。通过积极参与体育活动,我们可以改善心血管健康,增强肌肉力量,增加代谢功能并获得许多其他好处。体育活动对心血管系统有益。有氧运动,例如跑步,游泳和骑自行车,可改善心脏功能和血液循环,并降低心血管疾病的风险(Carmody和Bisanz,2023; Van Hul和Cani,2023年)。中度有氧运动降低血压,改善血脂水平并增加心脏的耐力。骨骼健康:体育活动对于骨骼健康至关重要。重力负载的活动,例如跑步,跳跃和举重,促进了骨密度的增加并降低了骨质疏松症的风险(Campbell等,2021; Lulla等,2022)。此外,体育锻炼有助于改善平衡和协调,减少跌倒和断裂的风险。体育锻炼会增强肌肉力量和灵活性。通过力量训练,例如举重和体操,可以增加肌肉质量,可以提高代谢率,并且可以改善身体形状(Arnoriaga-Rodríguez等人,2021年)。同时,拉伸会增加肌肉的灵活性和运动范围,减少肌肉和关节不适。其他好处:体育活动与许多其他好处有关。它可以帮助控制体重并降低糖尿病和某些癌症等慢性疾病的风险。此外,体育活动可提高睡眠质量,提高能量水平并促进大脑功能和认知性能(Liu等,2019)。近年来,肠道微生物组的体育活动关联一直是研究的广泛关注。肠道微生物组是生活在人类肠道中的微生物群落,并包含大量的微生物,例如细菌,真菌和病毒。他们在人类健康和免疫功能中起着重要作用(Aron- Wisnewsky等,2020)。作为一种生活方式,体育锻炼对肠道微生物组的组成和功能有积极的影响。研究表明,体育活动促进了肠道微生物组的多样性。多样性是指微生物组中不同物种的微生物的数量和比例(Barton等,2017; Carbajo-Pescador等,2018)。通过运动,我们可以通过增加有益细菌的数量并减少有害细菌的生长来改善肠道环境。有益细菌的增加有助于维持肠道的平衡状态,增强免疫系统功能并降低炎症性疾病的风险(De等,2021)。此外,体育活动增加了肠道微生物组的代谢活性。研究发现,运动可以改变肠道微生物组的代谢产物,例如短链脂肪酸(SCFA)。SCFA是通过肠道微生物组发酵饮食纤维生产的,对于肠道健康至关重要。它们为肠道细胞提供能量,维持肠粘膜屏障的完整性(Fiuza-Luces等,2018),并具有抗炎和抗肿瘤作用。体育活动可以增加运动后肠道微生物组产生的SCFA量,从而进一步促进肠道健康(Cheng等,2022)。
为了评估 P2X7 敲低对乳腺癌 (BC) 细胞行为的影响,我们设计了一种新型合成的可电离脂质 (SIL),以便能够有效转染小鼠 4T-1 细胞中靶向 P2X7 受体 (siP2X7) 的 siRNA-LNP。合成并表征了 SIL。通过 HPLC-ELSD 评估 LNP 稳定性 (残留脂质) 并使用 MTT 测定法确定 SIL 和 siP2X7-LNP 的毒性后,使用共聚焦显微镜可视化 siP2X7-LNP 的细胞摄取。在 LNP 表征后,分别用划痕测定法和流式细胞术分析了 siRNA 封装、剂量、孵育时间、迁移抑制和凋亡诱导。最后,使用蛋白质印迹法测量 P2X7R 的总表达蛋白。
摘要 炎症是引起干眼病(DED)眼表损害的潜在因素之一,越来越多的证据表明嘌呤能A 1 、A 2A 、A 3 、P2X4、P2X7、P2Y 1 、P2Y 2 和P2Y 4 受体在DED炎症调控中起重要作用:A 1 腺苷受体(A 1R )是全身促炎因子;A 2AR参与激活MAPK/NF-kB通路;A 3R结合腺苷酸环化酶的抑制和丝裂原活化蛋白激酶(MAPK)通路的调控导致转录调控;P2X4促进受体相关的促炎细胞因子和炎性小泡的激活; P2X7促进炎症小体活化,促炎细胞因子IL-1β和IL-18的释放;P2Y受体影响磷脂酶C(PLC)/IP3/Ca 2+信号通路和黏蛋白的分泌,提示嘌呤受体有望成为未来控制DED炎症的靶点。
摘要:子宫内膜异位症是一种依赖雌激素的妇科疾病,具有相关的慢性炎症成分,其特征在于子宫腔外的子宫内膜组织。其主要症状是疼痛,这种情况显然改变了疾病女性的生活质量。本综述旨在详尽地收集有关子宫内膜异位症相关疼痛中嘌呤能信号传导的当前知识。因核苷酸酶活性的变化而改变的细胞外ATP水解已在子宫内膜异位症中报道。 ATP在子宫内膜微环境中产生的积累表明核苷酸受体(P2受体)的持续激活能够产生持续的疼痛信息。P2X3受体,在感觉神经元中表达,介导伤害性,神经性疼痛和炎症性疼痛,并参与与子宫内膜异位相关的疼痛。对P2X3受体的药理抑制作用正在评估是子宫内膜异位症女性的疼痛治疗。此处还讨论了其他ATP受体的作用,例如P2X4和P2X7受体,这些受体参与了炎症细胞 - 粘膜和小胶质细胞 - 脑串扰,因此在炎性弹药和神经性疼痛中。腺苷受体(P1受体)主要扮演抗伤害感受和抗渗透性角色。尖锐的靶向药物,包括核苷酸受体和代谢酶,是用于子宫内膜异位相关疼痛的药理学管理的潜在非激素治疗工具。
