Sebastijan Hop 1,122,Maise Al Bakir 1,122,Crispin T. Hiley 1,2,3,122,Marcin Skrzypski 1,2,3,4,122,Alexander M. Frankell 1,2 Van den Bos 5,Diana Spierings 5,Dahmane Oukrif 9,Marco Novelli 9,Turja Chakrabarti 10,Adam H. Rabinowitz 11,Laila Ait Hassou 12,SaskiaLitière13 Ariana Huebner 1,2,16,CarlosMartínez-Ruiz 2,16,James RM Black 2,16,Wei Wu Micholas 10,Nicholas Angelo,16岁,朱利安(Julian),朱利安(Julian)17岁,朱利安·奇米埃尔克(Juliann Chmielecki)7,Carl Barrett 7,Carl Barrett 7 5,Karen H. Vousten 18,Trever Bivona,19,Trac *,Robert E. Hynds 1,2,Nnennaya Kanu 2,123,Simone Zaccaria 2,20,123
摘要 肿瘤抑制基因 p53 是癌症中最常见的突变基因,其中 R175H 是最常见的 p53 错义突变。然而,目前还没有针对突变 p53 的靶向疗法或免疫疗法获得批准。在这里,我们表征并研究了一种识别突变 p53-R175H 的单克隆抗体 (mAb),以了解其亲和力、特异性和体外抗肿瘤细胞活性。然后,我们将表达抗 R175H mAb 或双特异性抗体 (BsAb) 的 DNA 质粒递送到小鼠体内,以评估其治疗效果。我们的结果表明,抗 R175H mAb 以高亲和力特异性结合 p53-R175H 抗原,并识别 HEK293T 或 MC38 细胞上表达的人类突变型 p53-R175H 抗原,与野生型 p53 无交叉反应。在培养细胞中,抗 R175H mAb 表现出比对照更高的细胞毒性,但不会诱导抗体依赖性细胞毒性。我们在敲除内源性突变型 p53 等位基因后,制作了重组 MC38 小鼠细胞系 (MC38-p53-R175H),该细胞系过表达人类 p53-R175H。在体内,施用抗 R175H mAb 质粒对小鼠的 MC38-p53-R175H 产生了强大的抗肿瘤作用。抗 R175H BsAb 质粒的给药没有显示出治疗效果,但与抗 PD-1 抗体联合使用时观察到了强大的抗肿瘤活性。这些结果表明,针对特定突变表位使用
摘要:Aurano-Fin(AF)是一种有效的,低的硫氧还蛋白还原酶(TRXR)抑制剂,该抑制剂有效地通过活性氧(ROS)和DNA损伤介导的细胞死亡靶向癌症。这项研究的目的是通过将其与聚(ADP-核糖)聚合酶-1(PARP)抑制剂Olaparib(称为“ Aurola'”相结合来增强AF作为癌症治疗的效率。首先,我们研究了突变体p53是否可以使非小细胞肺癌(NSCLC)和胰腺导管腺癌(PDAC)癌细胞对AF和Olaparib治疗中的p53敲入和敲除模型中的p53蛋白质表达水平。其次,我们确定了AF和Olaparib之间协同细胞毒性的治疗范围,并阐明了潜在的分子细胞死亡机制。最后,我们在体内肺癌模型中评估了组合策略的有效性。我们证明了高浓度的AF和Olaparib在NSCLC和PDAC细胞系中协同诱导的细胞毒性,其最初对AF的耐药性较低的突变体p53蛋白。AUROLA组合也导致了ROS的最高积累,从而通过不同类型的细胞死亡(包括caspase-3/7依赖性细胞凋亡)导致ROS依赖性的p53 NSCLC细胞的细胞毒性,并由Z-VAD-FMK抑制,并由脂质的多质依赖性依赖于Ferroptos,并抑制了Ferroptos,并依赖于Ferroptos。也需要高浓度的两种化合物,以在鼠肺腺癌细胞系344SQ的3D球体中获得协同的细胞毒性作用,这在2D中很有趣。该细胞系用于合成小鼠模型中,在该模型中,Aurola的口服给药显着地延迟了129S2/SVPASCRL小鼠中突变体P53 344平方米肿瘤的生长,而单独的药物则没有作用。此外,RNA测序结果表明,AF-和AUROLA处理的344平方英尺肿瘤对免疫相关基因组负有负富集,这与AF的抗炎性药物作为抗毛发药物相符。仅用Aurola处理的344平方英尺肿瘤显示出与细胞周期相关的基因的下调,这可能解释了Aurola的生长抑制作用,因为没有富集与凋亡相关的基因组。 总体而言,这种新型的氧化应激诱导策略(AF)与PARP抑制(Olaparib)可能是突变体P53癌的有前途的治疗方法,尽管需要达到高浓度的两种化合物才能获得实质性的细胞毒性作用。仅用Aurola处理的344平方英尺肿瘤显示出与细胞周期相关的基因的下调,这可能解释了Aurola的生长抑制作用,因为没有富集与凋亡相关的基因组。总体而言,这种新型的氧化应激诱导策略(AF)与PARP抑制(Olaparib)可能是突变体P53癌的有前途的治疗方法,尽管需要达到高浓度的两种化合物才能获得实质性的细胞毒性作用。
在两种情况下(培养未分化细胞和 CD56 + 细胞期间)孵育后,计算集落形成单位(CFU,具有超过 100 个细胞的神经球)、簇形成单位(ClFU,30 至 100 个细胞的神经球)的含量、CFU 的有丝分裂活性及其特化强度。使用羟基脲(1 µ M)通过细胞自杀技术评估祖细胞的增殖活性。[6] 细胞周期 S 期的 CFU 池根据以下公式确定:N = [( ab)/a ] × 100%,其中 a 是未用羟基脲处理的细胞的 CFU 数量的组平均值;b — 用羟基脲处理的细胞的 CFU 数量的组平均值。通过计算 ClFU 与 CFU 的比率来确定祖细胞特化过程的强度(分化指数)。[6,9]
(续)指示统计上显着的差异(两尾t检验)。c和d,用媒介物(车辆)或20μmol/l d16处理的MDAH-2774细胞流式细胞仪细胞周期分析过夜。c,用PI染色的细胞的定量表明g 1-,s-和g 2 – m相间的细胞分布百分比。d,代表性pi files。*,p <0.05; **,p <0.01(两尾t检验,n = 3个生物学重复)。e,H1299稳定的殖民地形成
摘要免疫疗法已彻底改变了癌症治疗,但其效率取决于肿瘤中强大的免疫反应。沉默抑制肿瘤p53在肿瘤中很常见,可能会影响不同免疫细胞的募集和激活,从而导致免疫逃避和治疗反应不佳。我们发现,p53激活固定肽MDM2/MDMX抑制剂磺胺甲甲酸酯(ALRN-6924)抑制了p53野生型癌细胞在体外和体内的癌细胞生长。在携带p53野生型CT26.WT肿瘤的小鼠中,PD-1抑制剂DX400的单一疗法或磺胺链抑制肿瘤将时间延迟了50%和37%,而联合治疗则将肿瘤倍增时间降低了93%,导致了93%,导致中质生的生存时间增加。sulanemadlin的治疗导致免疫原性和与PD-1抑制作用的联合治疗增加导致淋巴细胞过滤的肿瘤增加。这种组合治疗策略可能会将部分响应者变成免疫疗法的反应者,从而扩大了对PD-1靶向免疫疗法的症状靶标组。
摘要背景:ROR2 是一种酪氨酸激酶受体,其表达在许多人类疾病中失调。在癌症中,ROR2 刺激增殖、存活、迁移和转移,并与更具侵袭性的肿瘤阶段相关。这项工作的目的是研究 ROR2 在黑色素瘤化学耐药性中的作用。方法:使用功能获得和丧失实验来研究 ROR2 在黑色素瘤中的生物学功能。使用结晶紫细胞毒性测定和膜联蛋白 V/碘化丙啶染色评估化疗药物和 BH-3 模拟物诱导的细胞死亡。使用蛋白质印迹法评估与细胞死亡有关的蛋白质的表达。使用 Student's t 检验和方差分析评估了操纵 ROR2 水平的细胞与对照细胞之间观察到的差异。结果:我们描述了 ROR2 通过增强黑色素瘤细胞对化疗药物和 BH-3 类似物的耐药性来促进肿瘤进展。我们证明 ROR2 在使用顺铂、达卡巴嗪、洛莫司汀、喜树碱、紫杉醇、ABT-737、TW-37 和维奈克拉治疗后减少了细胞死亡。这种影响是由抑制细胞凋亡介导的。此外,我们研究了与 ROR2 这一作用有关的分子机制。我们将 MDM2/p53 通路确定为 ROR2 的一个新靶点,因为 ROR2 正向调节 MDM2 水平,从而导致 p53 下调。我们还表明 ROR2 还会上调 Mcl-1 和 Bcl2-xL,同时负向调节 Bax 和 Bid 表达。ROR2 对这些蛋白质表达的影响是由 ERK 的过度激活介导的。结论:这些结果表明,ROR2 通过抑制细胞凋亡和增加化学耐药性促进黑色素瘤进展。这些结果不仅将 ROR2 定位为化学耐药性的标志物,而且还支持将其用作癌症的新治疗靶点。
p53 被称为基因组的守护者,是最重要的肿瘤抑制因子之一。它在大多数肿瘤中处于失活状态,这是通过肿瘤蛋白 p53 (TP53) 基因突变或关键负调节因子(例如小鼠双微分 2 (MDM2))的拷贝数扩增实现的。与 MDM2 蛋白结合并破坏其与 p53 相互作用的化合物可恢复 p53 肿瘤抑制因子活性,从而促进细胞周期停滞和凋亡。先前使用 MDM2–p53 蛋白–蛋白相互作用拮抗剂 (MDM2–p53 拮抗剂) 的临床经验表明,血小板减少和中性粒细胞减少代表可能限制其治疗效用的靶向剂量限制性毒性。降低给药频率同时保持有效暴露是减轻毒性和改善 MDM2–p53 拮抗剂治疗窗口的一种方法。然而,要实现这一点,需要一种具有优异效力和理想药代动力学特性的分子。在这里,我们介绍了一种新型、在研螺环氧吲哚 MDM2-p53 拮抗剂 brigimadlin (BI 907828) 的发现和表征。Brigimadlin 在临床前模型中表现出高生物利用度和暴露量,以及剂量线性药代动力学。Brigimadlin 治疗恢复了 p53 活性并导致 TP53 野生型、MDM2 扩增癌症临床前模型中的细胞凋亡诱导。以间歇给药方案口服 brigimadlin 在几种 TP53 野生型、MDM2 扩增异种移植模型中诱导了强效的肿瘤生长抑制。探索性临床药代动力学研究 (NCT03449381) 表明,接受口服布吉马林的癌症患者的全身暴露量高,血浆消除半衰期长。这些发现支持继续
摘要 p53 DNA 结合域 (DBD) 中的错义突变是每年新发癌症病例的一半原因。本文我们提出了一个热力学模型,该模型量化并关联了突变使 p53 失活的主要途径。我们发现 DBD 具有两种不寻常的特性——所有真核蛋白质中锌亲和力最高的特性之一,以及在缺乏锌的情况下极度不稳定性——预计这会使 p53 处于细胞内折叠/展开的边缘,而主要决定因素是可用的锌浓度。我们分析了 20 种最常见的致瘤性 p53 突变,发现 80% 会削弱锌亲和力、热力学稳定性或两者兼而有之。生物物理、基于细胞和鼠异种移植实验表明,合成的锌金属伴侣不仅可以挽救降低锌亲和力的突变,还可以挽救使 DBD 不稳定但不损害锌结合的突变。研究结果表明,锌金属伴侣每年可在美国治疗 120,500 名患者
摘要:热休克蛋白 (HSP) 是一种分子伴侣,可协助多种细胞活动,包括蛋白质折叠、细胞内运输、蛋白质复合物的组装或拆卸以及错误折叠或聚集蛋白质的稳定或降解。HSP40 也称为 J 结构域蛋白 (JDP),是最大的家族,有超过 50 个成员,包含高度保守的 J 结构域,负责与 HSP70 结合并刺激 ATPase 活性作为辅助伴侣。肿瘤抑制基因 p53 (p53) 是人类癌症中最常见的突变基因,是与 HSP40/JDP 功能性相互作用的蛋白质之一。大多数 p53 突变都是错义突变,导致获得意想不到的致癌活性,称为功能获得 (GOF),以及肿瘤抑制功能的丧失。此外,野生型 p53 (wtp53) 和突变型 p53 (mutp53) 的稳定性和水平分别对其肿瘤抑制和致癌活性至关重要。然而,wtp53 和 mutp53 的调节机制尚未完全了解。越来越多的报告表明 HSP40/JDPs 调节 wtp53 和 mutp53 的水平和/或活性。在这里,我们总结了与 HSP40/JDPs 与 p53 和癌症信号传导之间的联系相关的最新知识,以提高我们对肿瘤抑制 wtp53 和致癌 mutp53 GOF 活性调节的理解。
