相邻芳香核之间的相互作用通常会导致螺旋结构,并由于轨道重叠的变化而影响沿柱状堆栈的电荷载流子传输。4 因此,PAH 中 p 堆积和氢键的充分结合使我们能够在很宽的温度范围内建立所需的液晶结构。PAH 的一个特例是萘嵌苯,它由近稠合萘组成。5 最突出的分子体系是苝四羧基二酰亚胺 (PDI),它根据其取代基和功能团组装成不同的螺旋结构。6 取代基通常以对称方式连接在 PDI 核心的两个酰亚胺位置上,并提供例如分子间氢键和 p 堆积相互作用。对于 PDI 1 螺旋纳米纤维,由于相邻分子的酰胺基团之间的氢键而组装(图 1)。 7 纤维的螺旋节距为几十纳米,这归因于定向氢键。两个酰亚胺位置上具有高空间需求的取代基也用于控制分子堆积。PDI 2 的树枝状基团刺激分子的横向旋转,并根据 PDI 核心和树枝状基元之间柔性间隔物的长度诱导复杂的螺旋柱状组织。螺旋柱可以包含 PDI 四聚体作为基本重复单元,这些四聚体基于每个层中并排的两个分子。8 在另一个
相邻芳香核之间的相互作用通常会导致螺旋结构,并由于轨道重叠的变化而影响沿柱状堆栈的电荷载流子传输。4 因此,PAH 中 p 堆积和氢键的充分结合使我们能够在很宽的温度范围内建立所需的液晶结构。PAH 的一个特例是萘嵌苯,它由近稠合萘组成。5 最突出的分子体系是苝四羧基二酰亚胺 (PDI),它根据其取代基和功能团组装成不同的螺旋结构。6 取代基通常以对称方式连接在 PDI 核心的两个酰亚胺位置上,并提供例如分子间氢键和 p 堆积相互作用。对于 PDI 1 螺旋纳米纤维,由于相邻分子的酰胺基团之间的氢键而组装(图 1)。 7 纤维的螺旋节距为几十纳米,这归因于定向氢键。两个酰亚胺位置上具有高空间需求的取代基也用于控制分子堆积。PDI 2 的树枝状基团刺激分子的横向旋转,并根据 PDI 核心和树枝状基元之间柔性间隔物的长度诱导复杂的螺旋柱状组织。螺旋柱可以包含 PDI 四聚体作为基本重复单元,这些四聚体基于每个层中并排的两个分子。8 在另一个
外源性因素:外部因素,如紫外线 (UV) 辐射、电离辐射和化学致癌物,会显著造成 DNA 损伤。紫外线辐射可导致环丁烷嘧啶二聚体 (CPD) 和 6-4 光产物的形成,从而扭曲 DNA 螺旋。电离辐射可产生双链断裂 (DSB),这是最致命的 DNA 损伤形式之一。化学剂,包括烷化剂和多环芳烃 (PAH),也可以修饰 DNA 碱基,导致诱变。
微生物可以产生生物表面活性剂,因为它们是增加疏水化合物的生物利用度的关键药物,这可以用作微生物生长的碳源。1因此,产生生物表面活性剂的细菌可以进入疏水相,并代谢多种脂肪液烃和多环芳烃(PAHS)。生产表面活性剂的细菌也发现了许多商业应用,尤其是在修复环境中去除烃污染物和重金属的补救措施。2纯化的细菌表面活性剂已被用于控制食品中的病原体,3作为食品工业中的乳液稳定剂,4用于药物输送,5作为针对植物病原体的有效且环保的生物农药,6和美容工业中。7
多环芳烃(PAHS)是具有人类健康风险的主要风险的环境污染物。生物降解是环保的,是多种持续污染物的最吸引人的补救方法。与此同时,由于大量的微生物菌株收集和多种代谢途径,通过人工混合微生物系统(MMS)的PAH降解已经出现,并且被认为是一种有希望的生物修复方法。通过简化社区结构,澄清劳动力和简化代谢型号的人工MMS构建,表现出了巨大的效率。本综述描述了PAH退化的人工MMS的构建原理,影响因素和增强策略。此外,我们确定了开发MMS朝着新的或升级的高性能应用程序开发的挑战和未来机会。
摘要:小麦是一种主食,在全球范围内消耗是淀粉和蛋白质的主要来源。近年来,全球小麦的摄入量有所增加,总体而言,小麦被认为是健康食品,尤其是在用全谷物制成产品时。然而,通常通过烘烤和/或烤面包在食用之前几乎总是对小麦进行处理,这可能导致形成有毒加工污染物的形成,包括丙烯酰胺,5-羟基甲基甲基膜(HMF)(HMF)和多环状芳族芳族芳族氢碳酸盐(PAHS)。丙烯酰胺主要由自由(可溶性,非蛋白质)天冬酰胺形成,并在Maillard反应中减少糖(葡萄糖,果糖和麦芽糖),并分类为2A组致癌物(可能与人类的致癌物)。它还具有高剂量的神经毒性和发育作用。HMF也是在Maillard反应中产生的,但也可以通过果糖或焦糖化的脱水来形成。经常在面包,饼干,饼干和蛋糕中发现。其分子结构指向遗传毒性和致癌风险。pah是一大类化合物,其中许多是遗传毒性,诱变,致伤性和致癌性。它们主要是由于有机物的不完全燃烧而在油炸,烘烤和烧烤期间形成的。可以随着食谱和加工参数的变化以及有效的质量控制措施而降低这些加工污染物的生产。但是,在丙烯酰胺和HMF的情况下,它们的形成也高度取决于谷物中前体的浓度。在这里,我们回顾了这些污染物的综合,影响其生产的因素以及可以采取的缓解措施以减少小麦产品中的形成,重点是遗传学和农学的作用。我们还审查了全球食品安全部门通过的风险管理措施。
手工炼油,在当地俗语中通常称为“kpo-fire”,包括煮沸原油并收集产生的烟雾,这些烟雾在储罐中冷凝,并在当地用于照明、燃料和运输目的 [6]。临时酿酒厂使用明火加热,燃料是倒入地下坑中的原油。随着石油燃烧,其中一些会渗入土壤,可能污染地下蓄水层 [7]。炼油过程会产生浓密的烟尘和气态化合物,这些烟尘和气态化合物与未加工部分一起释放到环境中。炼油过程中会产生大量空气污染物,如炭黑和烟尘,主要含有多环芳烃 (PAH) [8-10]。这些污染物对环境和健康构成重大风险
工业发展过程中产生和认可的环境污染问题变得越来越突出。1种有机污染物,例如多环芳烃(PAHS),多氯联苯二苯基(PCB),石化碳氢化合物(TPH)和农药,并不断从诸如钢,coking,petro-化学药品和煤炭等各种行业中排出。化学物质被释放到环境中。土壤和沉积物中疏水有机污染物的长期吸附会导致严重的土壤和地下水污染问题。2 - 4因此,开发有机污染物污染的土壤的补救技术已成为一个重要的全球研究热点。在过去的二十年中,与有机污染的土壤的补救有关的论文数量已在全球范围内急剧增加(图1a)。可以通过其本质(物理,化学或生物补救)或施用类型(原位,现场)来构造被有机污染物污染的土壤的补救技术。物理
环境问题(例如土壤和水污染)很常见,是由工业过程和农业实践等人类活动引起的。这些污染物包括多种化学污染物,例如农药,重金属,含氯化溶剂的农药,多环芳烃(PAHS)以及新发展的污染物,例如微塑料和药品。由于这种污染物对人类健康,生态完整性和社会经济福利的有害影响,需要紧急补救行动。利用微生物的先天代谢能力将污染物转化为安全的代谢产物,生物修复已成为缓解污染的一种令人信服的持久方法。本研究对旨在应对土壤污染的生物修复策略进行了彻底的检查,重点是微生物群落之间的复杂相互作用,环境因素和补救效果。
青少年在呼吸的空气、吃的食物、喝的水和使用的产品中接触到各种各样的化学物质。许多化学物质已被证明会干扰体内激素的功能,而激素控制着生长、新陈代谢、生殖和性发育以及免疫功能等重要过程。一些研究表明,某些内分泌干扰化学物质 (EDC) 可能会影响青春期的开始时间;需要持续进行研究来确定接触的敏感时间窗口。增塑剂、杀虫剂、全氟和多氟烷基物质 (PFAS) 和多环芳烃 (PAH) 等 EDC 也会促进肥胖——鉴于全球青少年肥胖率不断上升以及青少年肥胖的终身影响(包括未来的心脏病),这是一个重要的考虑因素。
