建模的假肢插座(PS)的应力响应模式表明,PS的应力响应能力基于内部施加的插座压力的边界条件和插座的固定远端。根据PALF纤维体积,最小应力反应分别为12.2 MPa和15.1 MPa。PS中的应力导致图2所示的变形行为。总而言之,与整洁的树脂相比,PALF复合材料显示出较高的应力和变形反应。结果表明,新的PALF复合材料可能会根据PALF体积分数和树脂类型而有利于假肢应用。
在西方的最近报告中,小儿急性肝衰竭(PALF)中的本地肝脏存活(NLS)已提高到48-68%,但印度的数据表明,仅在10%的肝移植(LT)中,NLS的NLS较低47.7%,较高的死亡率(42.2%),而肝移植(LT)少得多。这可能是由于诊断延迟,转诊系统不良以及有限的正式训练的小儿肝病学家,儿科强化学家和该国的儿科LT计划。我们介绍了印度儿科胃肠病学,肝病学和营养学会(ISPGHAN)关于PALF的诊断和管理[3]的最新共识建议。表1概述了当前PALF管理实践中建议的修改,而图1提出了一种管理PALF的算法方法。
摘要:菠萝叶纤维(PALF)使用带有旋风喷射喷嘴的家用汽车洗衣机通过高压水(HPW)提取。沿着叶子喷洒了高压水,该叶子固定在距喷嘴7厘米的混凝土表面上,从20 s的36厘米截面中提取3.0%的纤维。通过扫描电子显微镜观察了PALF相,表明通过HPW获得的纤维几乎没有表面粘附,而使用脱皮器机器获得的纤维具有许多类似尺度的附件。在断裂菌株中未观察到差异。但是,HPW提取的纤维具有较高的弹性模量和最大应力。HPW的纤维的测得的α-纤维素含量为71.2±0.8%,脱皮器机器为55.4±0.1%。木质素的颜色图像显示,木质素保留在脱皮器机中提取的PALF中,而在HPW提取的PALF中未观察到木质素残基。以10°视角记录的HPW样品的绝对CIE染色指数(T CIE)值低于剥落器样品的绝对CIE指数,表明HPW样品比白色更接近白色,并且表现出比剥落器样品更轻的色彩。(2024年5月1日收到; 2024年6月28日接受)
与基于合成的不可降解纤维相比,菠萝叶纤维(PALF)的聚合物复合材料的抽象开发引起了人们的兴趣。然而,亲水性PALF与疏水性的热固体和热塑性聚合物的界面粘合不良。此外,PLAF的这种亲水性质会导致更多的水分吸收率,从而导致整体性质降解。可以通过修改纤维表面来解决此问题。因此,对纤维表面修饰对各种特性的影响以及与聚合物的粘附的影响是改善PALF及其复合材料关键词的关键:菠萝叶纤维纤维土壤覆盖物 - 菠萝叶子机制的组成部分绷带 - 适应性和bordage todive toperage toseal to norder seaste kite intery seaste sisea intery sisea intery sisea interae sisea interae sisea interae sisea interaipe nestea intery sisea interaipe nestea intery sisea interaipe nestea是一个巨大的销售。菠萝叶纤维的提取正在为商业和小型生产商开辟一个市场。正在研究许多其他可能性,例如可能来自菠萝的不同纤维。[1]菠萝是一种未鉴定的果实,是热带地区原生的。可用于市场机会的新兴行业是有价值的饮食纤维。水果的纤维是多种食物的有益补充。可见在其他区域中使用的水果的微晶纤维素。泰国,菲律宾,哥斯达黎加,中国和印度是世界上增长最快的国家,以及巴西[2]。*信函的作者纤维繁荣,除了其在东北和阿萨姆地区的强大基础。可用于生产力量表的菠萝农作物种植的最大区域是阿萨姆邦。印度在这种作物的产量中领先世界,这为纤维生产带来了更多的机会。近90-95%的产品是有机的,该地区产生了全国菠萝的40%以上[3]。创建纤维和纺织品,重点是绿色环境,这是消费和生活水平的增加。从利用叶子和茎的创意项目中获得知识,最近引发了对可持续发展的关注
近几十年来,天然纤维增强复合材料(NFRC)已成为传统材料(例如玻璃纤维)的有吸引力的替代品,并吸引了研究人员和学者,尤其是在环境保护的背景下。环境因素及其对可再生材料的基本特性的影响正在成为越来越流行的研究领域,尤其是天然纤维及其复合材料。尽管该研究领域仍在扩展,但天然纤维增强的聚合物复合材料(NFRC)在各种工程环境中发现了广泛使用。natu-ral纤维(NFS),例如菠萝叶(Palf),竹子,屁股,椰子纤维,黄麻,香蕉,亚麻,大麻,剑麻,kenaf和其他人具有许多理想的特性,但是他们的发育和使用了许多具有许多妇女的研究人员。这些纤维由于其各种有利的特性,例如轻度,经济性,生物降解型,出色的特定强度和竞争性机械性能,引起了人们的关注,这使它们成为有希望用作生物材料的候选人。因此,它们可以作为传统复合纤维(例如玻璃,芳香和碳)在各种应用中的替代材料。此外,天然纤维吸引了越来越多的研究人员的兴趣,因为它们在自然界和农业和食品系统的副产品中很容易获得,这有助于改善环境生态系统。本文提供了NFRC的简要概述,研究了它们的化学,物理和机械性能。这种兴趣共同涉及寻找环保材料,以取代建筑,汽车和包装行业中使用的合成纤维。天然纤维的使用不仅是逻辑的,而且是实用的,因为它们的纤维形式可以通过化学,物理或酶促处理很容易提取和强度。它还强调了与NFRC相关的一些重大进展,从经济,环境和可持续性的角度来看。此外,它还简要讨论了他们的各种应用,都重点关注他们对环境的积极影响。