武装部队部媒体中心 60 boulevard du général Martial Valin CS 21623 - 75009 Paris Cedex 15
提出的实验论文是光子学[1-4]的所谓添加剂制造(FA或通常是“ 3D打印”)的背景的一部分。,我们的目标是由二氧化硅玻璃预成型的“光功能”激光协助的添加剂制造。这些预形成将在包含这些“功能”的光纤中拉伸。基于在实验室中实施了基于玻璃料中装有氧化物颗粒的聚合物树脂的多泵聚合物(MPP多光子聚合物化)的添加剂制造技术。inphyni选择的方法的独创性在于激光对模式的写作配置,以及将此步骤集成到Inphyni中良好控制的技术中。新技术将使制造复杂的结构集成到光纤中,并对组成和形式进行三维控制。提出的论文旨在定义在二氧化硅上进行制造预成型所需的实验条件,并研究在最终光纤中获得“功能”所需的参数。主要工作是实验性的,旨在使用MPP和在二氧化硅中生产光纤的标准方法,适合FA。
作为二进制开关,RAS蛋白在信号传导过程中切换到ON/OFF状态,并且在正常条件下处于皮带上。然而,在RAS相关疾病(例如癌症和rasopathies)中,调节RAS信号传导的基因中的突变或RAS本身会永久激活RAS蛋白。 该开关的结构基础已被充分理解;但是,调节RAS蛋白的确切机制尚不清楚。 RAS/MAPK综合征是由与RAS/丝裂原激活的蛋白激酶途径相关的基因种系突变引起的多系统发育障碍,影响了1,000-2,500名儿童中的1个。 这些包括多种疾病,例如Noonan综合征(NS)和NS相关疾病(NSRD),例如有氧运动面(CFC)综合征(CFC)综合征,Costello综合征(CS)和NS,NS和NS具有多种发张术(NSML,NSML,也称为NSML,也称为Leopard Syndrome)。 经常表现出与rasopathies相关的心肌病(CM)和肥厚的心肌病,这表明rasopathies可能是CM的潜在致病因素。 但是,当前的支持证据是零星且不清楚的。 rasopathy患者还表现出各种先天性心脏病(CHD)。 超过15个基因编码RAS/MAPK信号通路的成分,这些基因对于细胞周期至关重要,在扩散,分化,生长和代谢中扮演调节作用。 这些基因与这些综合征的分子遗传发病机理有关。 然而,一方面给定综合征的遗传异质性,另一方面的等位基因在诊断RAS/MAPK相关疾病方面很难进行分类。然而,在RAS相关疾病(例如癌症和rasopathies)中,调节RAS信号传导的基因中的突变或RAS本身会永久激活RAS蛋白。该开关的结构基础已被充分理解;但是,调节RAS蛋白的确切机制尚不清楚。RAS/MAPK综合征是由与RAS/丝裂原激活的蛋白激酶途径相关的基因种系突变引起的多系统发育障碍,影响了1,000-2,500名儿童中的1个。这些包括多种疾病,例如Noonan综合征(NS)和NS相关疾病(NSRD),例如有氧运动面(CFC)综合征(CFC)综合征,Costello综合征(CS)和NS,NS和NS具有多种发张术(NSML,NSML,也称为NSML,也称为Leopard Syndrome)。经常表现出与rasopathies相关的心肌病(CM)和肥厚的心肌病,这表明rasopathies可能是CM的潜在致病因素。但是,当前的支持证据是零星且不清楚的。rasopathy患者还表现出各种先天性心脏病(CHD)。超过15个基因编码RAS/MAPK信号通路的成分,这些基因对于细胞周期至关重要,在扩散,分化,生长和代谢中扮演调节作用。这些基因与这些综合征的分子遗传发病机理有关。然而,一方面给定综合征的遗传异质性,另一方面的等位基因在诊断RAS/MAPK相关疾病方面很难进行分类。尽管在大多数ras病中都有某些遗传均匀性,但几种ras病是等位基因疾病。这个等级性指出了关键信号节点的作用,并阐明了这些相关综合征之间的重叠。尽管在理解因果突变的病理生理学方面取得了长足的进步,并且对因果突变的鉴定以及对其病理生理后果的功能分析,但对于许多被诊断出患有RASOPARSATIS的患者仍有未知的因果基因。
生物多样性在全球范围内正在下降,如果要逆转当前趋势,预测物种多样性至关重要。树种丰富度(TSR)长期以来一直是生物多样性的关键衡量标准,但在当前模型中存在很大的确定性,尤其是考虑到经典的统计假设和机器学习成果的生态解释性差。在这里,我们测试了几种可解释的机器学习方法,以预测TSR并解释美国大陆的驾驶环境因素。我们开发了两个人工神经网络(ANN)和一个随机森林(RF)模型,以使用森林库存和分析数据和20个环境协变量来预测TSR,并将它们与经典的广义线性模型(GLM)进行比较。模型。采用了一种可解释的机器学习方法,Shapley添加性解释(SHAP),以解释驱动TSR的主要环境因素。与基线GLM相比(R 2 = 0.7; MAE = 4.7),ANN和RF模型的R 2大于0.9,MAE <3.1。此外,与GLM相比,ANN和RF模型产生的空间群集TSR残差较少。塑形分析表明,TSR最好通过干旱指数,森林面积,高度,最干燥季度的平均降水量和平均年温度预测。塑造进一步揭示了环境协变量与TSR和GLM未揭示的复杂相互作用的非线性关系。该研究强调了森林地区保护工作的必要性,并减少了低森林但干旱地区的树种与降水有关的生理压力。此处使用的机器学习方法可用于研究其他生物的生物多样性或在未来气候场景下对TSR的预测。
摘要 - 能源存储资源在参与批发电力市场时必须考虑价格不确定性及其物理工作特征。这是一个挑战问题,因为电价高度波动,并且能源存储具有效率损失,功率和能量限制。本文提出了一种新颖,多功能且可转移的方法,将基于模型的优化与卷积长的短期记忆网络相结合,以响应或竞标批发电力市场。我们使用纽约州的历史价格测试了我们提出的方法,这表明它取得了最新的结果,与完美的远景案例相比,在价格响应和批发市场竞标设置的情况下,均具有70%至接近90%的利率。我们还通过使用纽约数据预先培训模型来测试转移学习方法,并将其应用于澳大利亚昆士兰州的套利。结果表明,转移学习实现了出色的套利利润,只有三天的本地培训数据,证明了在数据可用性非常有限的情况下,其在Scratch的培训方面具有显着优势。
图2。(a)使用GCMC模拟在87.3 K.交叉点(绿色圆圈)和通道(黄色圆圈)孔(黑色圆圈(黑色圆圈))中使用的GCMC模拟获得的PCN-224的AR吸附等温线。封闭和开放圆圈分别对应于吸附和解吸等温线。(b)从吸附发作到完整填充的不同压力,在通道(绿色)和相交(黄色)孔之间的吸附分子分布的特征快照。每个隔室中的平均分子数在每个快照下面指示。(a)中的垂直虚线表示(b)中快照的压力。框架原子颜色代码:o,红色; H,隐藏; C,灰色; n,蓝色; ZR,紫罗兰。
光电密度作为位置和时间的函数提供了基本信息,以模拟局部并通过整合凝结物质的宏观动力运动。此处,使用爱因斯坦和LAUB的工作以及与麦克斯韦的方程式一起描述电磁场的表达式,开发了与光学密度相关的边界条件。因此,形成了一个约束,该约束允许总力与力量密度之间建立独特的关系,这是通过物理材料的保护原则实现的,并由局部同质化的构造参数描述。总结的新实验研究可以从新的见解中获得进一步的见解。呈现的数学步骤构成了建模各种光机电现象的基础,包括膜,束,梁,悬臂和波导等固态系统和固态系统中的光学力,并且可以用相关的理论工作来解释。力密度边界条件的这种规范与基本的科学界面有关,包括涉及各种量子冷却问题,分子验光力学,光化学和生物物理学(包括机械传输)。受影响的技术包含的集成光学力学(硅光子学,可以启用新的光学设备概念),通信系统(光学力量可以取代电子开关),遥控和驱动,推进,感应,感应和导航。
摘要Papert and Solomon的1971年备忘录介绍了二十件事,与一台计算机有关,这是建筑主义的基础。在本文中,我们提议将建筑主义活动带入生活材料。工具和方法的重大发展已将生物学变成了一门设计科学:现在有可能将生物学(或生物设计)做成事物,而不仅仅是观察过程和行为。我们用生物学制作的二十件事清单包括制作颜色,玩具,游戏,胰岛素,电池,传感器等的示例。在讨论中,我们回顾了制作生物学如何解决建筑主义者学习的关键:“修补性”,实验能力; “概念性”,对学习过程反馈的即时性; “表达”,产品的个人定制;和“可用性”,在日常环境中使用学习设计的能力。我们总结了K-12教育可访问且负担得起的工具的概述。
来自整个生命树的概要证据表明,表观遗传遗传比以前想象的更普遍。如果表观遗传的遗传确实与数据所暗示的一样普遍,那么这一发现对进化论具有潜在的重要意义,以及我们对进化和适应进展的理解。但是,我们目前缺乏了解各种表观遗传类型的常见以及它们如何影响表型的理解。从这个角度来看,我们回顾了需要解决的开放问题,以将表观遗传遗传完全整合到进化论中,并为表型进化开发可靠的预测模型。我们认为,应对这些挑战将需要来自不同学科的生物学家的合作,并关注对数据和现象的探索,而不会对潜在机制或结果进行先进的限制。