a。CDK7底物(RNAP II)在用DMSO(对照)处理的HCT116细胞中或通过免疫印迹测量的指示化合物。b。通过免疫印迹在处理过的HCT 116细胞中癌基因C-MYC和DNA双链断裂标记H2AX的表达。C.细胞增殖(C -BRDU分析)和D,处理后的HCT 116细胞中的细胞凋亡分析(Annexin V/7AAD染色)。e。在用DMSO(对照)处理的MDA-MB-231(TNBC)细胞中,在MDA-MB-231(TNBC)细胞中的凋亡制造商(裂解的caspase 3和裂解PARP1)的表达表达或通过免疫印迹测量的指示化合物。
背景:铁铁作用是一种依赖铁的编程细胞死亡模式,该模式是由磷脂过氧化的有毒积累引起的。尽管已知它会影响肿瘤的起始和生长,但尚未建立与铁毒相关基因(FRGS)(FRGS)(FRGS)(SCLC)之间的关联。方法:我们使用基因表达综合(GEO)和铁毒数据库(FERRDB)来获取有关SCLC及其相关FRG的信息。随后,使用最小绝对收缩和选择算子(LASSO)和支持向量机递归特征Eilmination(SVM-RFE)算法鉴定出标记基因,并分析单基因函数和途径富集。使用药物 - 基因相互作用数据库(DGIDB),我们确定了针对六个标记基因的40种药物。竞争性的内源性RNA(CERNA)网络揭示了基于标记基因的长期非编码RNA(LNCRNA) - microRNA(miRNA) - 梅纳(miRNA) - 梅纳(miRNA) - 通用RNA(mRNA)。结果:将六个差异表达的FRG(ATG3,MUC1,RRM2,IDH2,PARP1和EZH2)鉴定为具有准确诊断能力的标记基因。根据单基因功能和途径富集分析,这些标记基因可能与免疫调节和细胞周期有关,以及与肿瘤发生相关的许多途径,包括JAK-Stat和PPAR信号途径。此外,Cibersort分析表明,MUC1和PARP1表达可能会影响SCLC中的免疫微环境。现在必须在临床应用之前通过进一步的研究来确认这些结果的准确性。结论:我们使用逻辑回归模型确认了标记基因诊断SCLC的准确性,从而提供了进一步研究与SCLC相关机制的机会。
参与合成致死作用的DDR信号通路已被研究。然而,虽然DDR基因在RCC进展中的作用探索取得了成果,但它们之间的关联尚未得到系统的总结。聚(ADP-核糖)聚合酶(PARP)1抑制剂用于治疗BRCA1/2 DNA修复相关突变的肿瘤。PARP家族酶发挥翻译后修饰功能,参与DDR和细胞死亡。PARP、毛细血管扩张性共济失调突变基因和聚合酶θ的抑制剂在特定RCC亚型的治疗中起关键作用。PARP1可作为预测免疫检查点抑制剂治疗效果和评估多溴1突变ccRCC患者预后的重要生物学标志物。因此,DDR通路在RCC进展或治疗中的作用可能对某些特定类型RCC的治疗具有希望。
聚(ADP-核糖)聚合酶(PARP)家族在细胞过程中具有许多基本功能,包括调节转录,凋亡和DNA损伤反应。PARP1具有聚(ADP-核糖)活性,当通过DNA损伤激活时,增加了分支的PAR链以促进其他修复蛋白的募集,以促进DNA单链断裂的修复。PARP抑制剂(PARPI)是第一个批准的癌症药物,该药物专门针对BRCA1/2突变的乳腺癌和卵巢癌中的DNA损伤反应。从那时起,我们了解肿瘤对PARP抑制剂的敏化的机制以及扩大PARPI治疗其他几种癌症类型的方法的显着进步。在这里,我们回顾了PARPI的作用机理,肿瘤对PARPI的生物标志物的最新进展,PARPI疗法的临床进展,包括联合疗法的潜力和肿瘤耐药机制。
抽象的DNA-蛋白交联(DPC)是最普遍和有害的DNA病变之一,是由于暴露于代谢应激,药物或交联药物(如甲醛(FA))而引起的。fa是甲醇代谢,组蛋白脱甲基化,脂质过氧化和环境污染物的细胞副产品。无法修复FA诱导的DPC几乎所有基于染色质的过程,包括复制和转录,导致免疫缺陷,神经变性和癌症。然而,它在很大程度上仍然未知细胞如何维修DPC。由于缺乏鉴定DPC的技术,我们不理解FA的蛋白质类型会阻碍DPC修复的研究。在这里,我们通过将氯化葡萄球菌差异超速离心与HPLC-MAS-MAS光谱法(MS)耦合,从而设计了一种新型的生物测定法,以介绍FA诱导的DPC。使用该方法,我们揭示了FA诱导的人类细胞中FA诱导的DPC的蛋白质组,发现形成DPC的最丰富的蛋白质是PARP1,拓扑异构酶I和II和II和II,甲基转移酶,DNA和RNA聚合酶,组蛋白,组蛋白,以及核糖体蛋白。为了鉴定修复DPC的酶,我们进行了RNA干扰筛选,发现皮瓣核酸内切酶1(FEN1)的下调使细胞对FA过敏。由于Fen1具有5'-FLAP内切酶活性,因此我们假设FA诱导了DPC偶联的5'-FLAP DNA片段,可以通过Fen1处理。的确,我们证明了FA会损坏通过碱基切除途径(BER)转化为5'-FLAP的DNA碱基。我们还观察到受损的DNA碱基与DPC和FEN1共定位。从机械上讲,我们显示了FEN1在体内修复FA诱导的DPC和裂解5'-FLAP DNA底物,这些DNA具有模拟于体外的DPC。我们还发现,FEN1修复酶拓扑异构酶II(TOP2)-DPC,由其抑制剂依托泊苷和阿霉素诱导的诱导的酶促蛋白酶和阿霉素独立于BER途径,而FEN1和FEN1和DPC靶向的蛋白酶sprtn是对两种FA诱导的非Zym Zym Zym Zymations sprapterations spr的可行途径top2-dpcs。值得注意的是,我们发现FA诱导的非酶DPC和酶ToP2-DPC迅速通过聚辅助核糖基化(ParyLation)迅速修饰,这是一种由PARP1催化的翻译后修饰,由PARP1催化的,这是一种由Paryling DNA损伤损害蛋白和DNA Reparion Reparte resation and DNA损伤蛋白的关键DNA损伤效应器和DNA Reparte resation and dna Reparte stotes和DNA Reparte stotes。,我们用HPLC-MS的抗PAR抗体进行了免疫沉淀(IP)测定,并将Fen1鉴定为parylation底物。接下来,我们表明DPC底物的填充信号发出了Fen1,而Fen1的抚养也将Fen1驱动到DPC位点。最后,使用末端ADP-ribose-MS方法的酶促标记,我们将FEN1的E285残基确定为主要的荷置位点,这似乎是FEN1迁移到DPCS所需的。综上所述,我们的工作不仅揭示了FA诱导的DPC的身份,而且还发现了前所未有的PARP1-FEN1核酸酶途径,是一种通用和势在必行的机制,可以修复其他DPC并防止DPC诱导的基因组不稳定。
PARP家族的ADP-核糖基转移酶包括一组细胞中具有各种调节功能的酶,范围从DNA损伤修复到控制细胞周期进展和免疫反应。多年来,这些知识导致使用PARP1/2抑制剂作为治疗卵巢,泛氧化,前列腺和乳腺癌治疗的主要药物策略,并在编码涉及DNA修复机制的蛋白质的基因中持有突变(合成六)。同时,过去十年在理解受单ADP-核糖基调节的细胞途径方面取得了重大进展,在开发新型选择性化合物以抑制那些赋予具有单ADP-核糖基化活性的parps的细胞中。本综述着重于癌症领域的进展,深入研究了有关酶的一部分(干扰素刺激的PARP)在癌症进展中的作用的最新发现。
24 24 24 24泛素特异性肽酶1(USP1)是DNA转移合成的关键调节剂和Fanconi贫血DNA Repition途径1,2。USP1从多种底物(PCNA,FANCI,FANCD2,PARP1,EZH2,CHK1等)中去除泛素与DNA损伤修复(DDR)3非常重要。USP1抑制剂可能会患有DDR脆弱性的某些癌症。ASN-3186是去泛素化酶USP1的选择性和有效抑制剂。ASN-3186治疗导致BRCA1/2突变的乳腺癌细胞系中的细胞死亡。ASN-3186与第一代或第二代PARP抑制剂(Olaparib/saruparib)结合使用时表现出强大的细胞杀伤协同作用。此外,ASN-3186在BRCA1/2MUT和HRD-(同源重组缺乏症)中表现出强烈的肿瘤生长抑制作用,具有主要PARPI耐药性。在头对头研究中,ASN-3186被发现比KSQ-4279(据报道的USP1抑制剂)4作为单一疗法或与Brcamut肿瘤模型中的Olaparib结合使用。正在计划进一步开发ASN-3186作为潜在的一流USP1抑制剂。
摘要●目的:研究自噬抑制剂3-甲基趋化(3-MA)在糖尿病小鼠模型(DM)和潜在机制上的作用。●方法:将雄性C57BL/6J小鼠随机分为正常对照组(NC组)和DM组。dm是通过多种低剂量腹膜内注射链蛋白酶(STZ)60 mg/kg●连续5天诱导的。dm小鼠随机细分为未处理的组(DM组),3-ma(10 mg/kg●dm gavage)治疗组(DM+3-ma组)和氯喹(CQ; 50 mg/kg通过腹膜内注射)治疗组(DM+CQ组)。每周记录空腹血糖(FBG)水平。在实验结束时,收集了视网膜样品。The expression levels of pro-apoptotic proteins cleaved caspase-3, cleaved poly ADP-ribose polymerase 1 (PARP1) and Bax, anti-apoptotic protein Bcl-2, fibrosis- associated proteins Fibronectin and type 1 collagen α1 chain (COL1A1), vascular endothelial growth factor (VEGF), inflammatory factors interleukin (IL)-1β和肿瘤坏死因子(TNF)-α以及自噬相关蛋白LC3,
摘要:辅助生殖技术 (ART) 对老年女性的疗效仍然受到限制,这主要是由于对潜在病理生理学的理解不完全。本综述旨在巩固当前关于与年龄相关的线粒体改变及其对卵巢衰老的影响的知识,重点关注线粒体 DNA (mtDNA) 突变的原因、其修复机制和未来的治疗方向。通过系统搜索电子数据库,确定了截至 2024 年 9 月 30 日发表的相关文章。自由基理论提出,活性氧 (ROS) 会对 mtDNA 造成损害并损害卵母细胞中 ATP 生成所必需的线粒体功能。卵母细胞面临修复 mtDNA 突变的长期压力,这种压力可持续长达五十年。mtDNA 表现出有限的双链断裂修复能力,严重依赖于聚 ADP-核糖聚合酶 1 (PARP1) 介导的单链断裂修复。这一过程会消耗烟酰胺腺嘌呤二核苷酸 (NAD + ) 和 ATP,形成一个恶性循环,持续的线粒体 DNA 修复会进一步损害卵母细胞的功能。中断这一破坏性循环的干预措施可能会带来预防效益。总之,线粒体 DNA 突变和修复需求的累积负担可能导致 ATP 消耗并增加非整倍体的风险,最终导致老年女性的 ART 失败。
9:30-9:40 通过 ATX020 抑制 KIF18A,可通过与染色体不稳定性发生的合成致死相互作用导致有丝分裂停滞和强大的抗肿瘤活性* Maureen Lynes,Accent Therapeutics,马萨诸塞州列克星敦 9:40-9:45 讨论/问答 9:45-9:55 Nimbolide 靶向 RNF114 诱导 PARP1 的捕获和 BRCA 突变癌症中的合成致死* Yonghao Yu,哥伦比亚大学瓦格洛斯内科与外科医学院,纽约,纽约 9:55-10:00 讨论/问答休息 上午 10:00-10:30 | Grand Salon Opera Foyer 不符合 CME 资格 全体会议 2:合成致死机制 上午 10:30-12:30 | Grand Salon Opera AB 会议主席:Zuzana Tothova,Dana-Farber 癌症研究所,马萨诸塞州波士顿 CME 合格 10:30-10:50 黏连蛋白突变型髓系恶性肿瘤的治疗脆弱性 Zuzana Tothova 10:50-11:00 讨论/问答 11:00-11:20 SWI/SNF 突变型癌症的合成致死率 Charles W.M.Roberts,圣犹大儿童研究医院,田纳西州孟菲斯 11:20-11:30 讨论/问答 11:30-11:50 RAP1GDS1 的长异构体是 RAS 驱动的肺腺癌中的合成脆弱性 E. Alejandro Sweet-Cordero,加利福尼亚大学旧金山分校,加利福尼亚州旧金山
