用聚丁乙烯依代苯二甲酸酯(PBAT)和淀粉产生的材料引起了人们对包装和食物接触应用的极大兴趣,包括支持活性抗菌剂,例如氧化锌纳米颗粒(ZnO)。缺乏针对这些材料安全的研究,这些材料与当前的食品接触材料的参考规则进行了评估。与ZnO合并了一种市售的基于PBAT/淀粉的材料,并在模拟剂和温度的不同条件下研究了膜的整体和特定迁移。由于红外光谱证实,由于淀粉的释放而超过了总体迁移(OM)极限。对于乙醇10%的温度对OM的影响较高。在两个测试乙醇10%的温度下,ZnO颗粒的掺入降低了OM。将ZnO掺入乙酸中的影响仅在20℃。在淀粉旁边,大多数相关的移民是由丁二醇和两种不同种类的二肽制成的PBAT低聚物,苯二甲酸或脂肪酸。在环状和线性形式的1,4-丁烷二二醇和脂肪酸,丁基丁二醇丁二醇和寡聚二二酸丁二醇和寡聚剂二甲苯二酸中,在用GC-MS的未靶向筛选中检测到-3-烯基六烷基酯。未完全鉴定出第二个TPA低聚物。在几种情况下,特定的迁移是根据模拟剂和温度高于50μgkg-1(半定量)的温度,这是需要进行其他毒性测试的阈值(用于寡聚剂的遗传毒性测试(应用于1000 DA以下)的阈值测试)。这表明需要进行更详细的研究,并具有更精确的定量,以验证对毒性测试的需求。
摘要:使用可生物降解的纤维作为常规聚光纤维的替代品已成为对抗农业白人污染的重要技术。解决了基于PBAT的可生物降解膜的拉伸强度,水蒸气屏障特性和降解期的缺点,该研究旨在创建一个可以改善PBATFIM的多样性的复合纤维。为此,研究引入了PBAT/PLA-PPC-PTLA三元混合系统。该系统将PBAT与PLA和PPC有效融合,这是通过电子显微镜测试证明的,表现出在混合纤维的表面和横截面上没有明显的缺陷。与纯PBAT可生物降解纤维相比,开发的三元混合系统的拉伸强度提高了58.62%,水蒸气屏障特性增强了70.33%,功能时期的扩展为30天。玉米作物的现场实验表明,经过改进的可生物降解膜更适合农业生产,因为它改善了热绝缘和湿度的保留,导致玉米产量增加了5.45%,接近传统的聚油管的产量。
3萨奇大学教授,印第安纳州452020,印度,由于人类的日常施用中的常规塑料产品过度使用,并且根据可获得的数据,只有9-10%的数据是从生产的日期中回收的,堆肥塑料,可堆肥的塑料,例如多乳酸(pla)和多种脂肪(butylene adipate-co-co-co-co-co-co-sereprate)(pbat)(PBAT)由于其生物学上可降解的特性,它是常规塑料的替代方法。这些塑料提供碳循环的圆形性。但是,每个人都有优势和缺点。PLA和PBAT是进行了几项研究的聚合物。这两种聚合物的化合物已经进行了有或没有链扩展器的准备,并且特性是研究。现在已经合成了许多可堆肥和可生物降解的聚合物,无论其单体根,无论是自然的还是化石碱。新开发的聚合物聚丁烯琥珀酸酯(PBS)也因其独特的特性而引起了制造商的注意。因此,PLA/PBAT/PBS的三元混合物在相位形态及其物理特性方面非常有趣,同时提供堆肥实践。在这项工作中,我们准备了不同的PLA/PBAT/PBS的混合物,或者不使用链条扩展器和碳酸钙作为填充剂。研究已在吹制薄膜挤出机上进行评估,以评估加工性。关键字:PLA-聚乳酸,PBAT-聚(丁基脂肪 - 蛋白甲酸酯),PBS -PBS-聚丁烯琥珀酸酯,CE - 链扩展器1。简介聚(丁基琥珀酸酯)(PBS)还报道了新开发的可生物降解聚合物之一,以增加基于PLA/PBAT的混合物的延展性。有趣的是,发现PLA/PBS与PLA矩阵的混合物被发现使它们对于制作二次包装的膜有趣。此外,研究由PLA,PBAT和PBS组成的三连续混合物/化合物的研究表明,具有与聚(乙烯)类似的特性的生物基相混合的有希望的有望[1-2S]。由于相分布,很难控制制造。更有希望。如今,已经开发了从生物质生产琥珀酸的植物,很快将完全由可再生能源生产[2]。此外,PBAT可能是可续签的,因为它的单体之一,现在可以从自然资源中获得1,4丁烷二醇[3]。使用可堆肥塑料生产柔性膜可能尤其重要,因为它们
在这项研究中,将百里香精油添加到多种组合物(0、1、2、5、5、10、15和20%w/w)中的聚(丁二醇 - 二甲酸酯)(PBAT)膜中,并评估了精油对PBAT特征的影响。胶片是使用铸造技术生产的。通过中红外,气相色谱 - 质谱仪和抗菌活性评估百里香精油(EO)。通过中红外,机械和热测试评估膜。结果表明,EO具有较高浓度的O-丙烯和抗菌活性,针对细菌大肠杆菌和金黄色葡萄球菌。根据所测试的组合物分析了膜的机械和热性能。薄膜已显示出有望用作主动包装的希望。
塑料培养通过聚合膜提高了作物质量和产量,但由于湿度和污染,它们的处置不当会损害环境。这项研究旨在使用大豆和花生壳以及聚(丁基 - 磷酸二甲甲酸酯)(PBAT)开发可生物降解的覆盖膜(PBAT)。残基的特征是通过热重分析的特征,并通过吸水,接触角和机械性能评估覆盖膜。残基的热行为表明稳定性低于200ºC。农业浪费改善了疏水性,但将膜的吸水值提高了18.5倍(14天后PBAT/SH5)。通过扫描电子显微镜获得的显微照片表明残基颗粒的重要分布和团聚酸盐的形成,导致机械性能降低。研究发现,可以将以粉末形式的农业工业残基添加到聚合物基质中,以通过传统的加工技术产生可生物降解的覆盖膜。这种方法有可能为更可持续的生产系统做出贡献。
摘要本文的目的是简单地讨论对Argeli冰纤维的潜力的洞察力,因为它是增强环保聚合物复合材料中的增强剂。通过机械分解晒干的Argeli Bast纤维束,然后进行化学处理,因此通过融化化合物进行了化学处理。材料的特征是高级分析工具,例如拉伸和岸D硬度测试,以及光学和电子显微镜。最初包含粘合在一起的微纤维捆绑包的Argeli纤维,发现在融化过程后将其剥落成组成的微纤维,并在PLA/PBAT混合矩阵中均匀分布。将Argeli纤维添加到PLA/PBAT混合物中,导致了聚合物基质的增强,随着拉伸模量的增加以及岸D硬度的增加,通过纤维化学处理的性能进一步增强。后一种性质的增强归因于化学处理引起的高度结晶纯纤维素框架的形成,这是由于无定形部分的溶解以及其他杂质从整洁的纤维中溶解。Argeli纤维表现出可生物降解聚合物复合材料的潜在增强剂。关键字:Argeli纤维,形态,PLA/PBAT混合物,聚合物复合材料,海岸硬度介绍塑料在许多不同的行业中广泛使用,因为它们的出色特性包括强,弹性,对光和化学物质的耐药性,以及适合广泛的温度范围。由于这些特性及其可负担性,塑料现在在全球需求量很高,每年有4亿吨消费(Devasahayam等,2019)。最终导致在环境中丢弃大量塑料废物(Chaiwutthinan等,2019;Hernández-López等,2019)。在商品塑料中,聚乙烯(PE),聚丙烯(PP),聚氯乙烯(PVC),聚乙二醇三苯二甲酸酯(PET)和聚苯乙烯(PS)是最常用的常规聚合物(Andrady&Neal,2009年)。主要是这些合成塑料是不可生物降解的,可抗大气的,并且在自然环境中持续很长时间。导致大量废物导致严重的生态,经济和健康问题(Weng等,2013)。因此,已经搜索了新的可生物降解环保,具有成本效益,可再生资源的替代塑料材料。
但是,值得注意的是,生物降解的塑料的降解率取决于塑料的物理化学特征,以及生命结束时场景,并且快速分解只能在特定和有利条件下观察到。14,17 - 19最有利的治疗方法是堆肥,大量微生物以及适当的温度和湿度水平促进了可生物降解的塑料的降解。20然而,当前的工业堆肥处理周期通常比可生物降解的塑料的完整分解周期短。16,21这种不匹配会导致棘手的微塑料问题和实际垃圾填埋场处置。22同时,公众对“可生物降解”一词的误解导致很大一部分塑料废物直接被丢弃到环境中。许多研究表明,环境中可生物降解的塑料的降解速率非常缓慢。例如,在海水一年后几乎没有明显的分解,这突出了这些废物的环境积累的持续问题。23此外,对于脂肪族 - 芳族共聚物PBAT,大多数PBAT降解的微生物†电子补充信息(ESI)可用。参见doi:https://doi.org/ 10.1039/d3GC04500E
行业国防研发组织(DRDO)共享了一项技术,用于制造可生物降解的包装产品,使用PBAT(一种可生物降解的聚合物,源自石油产品或植物油),免费制作了40多个工业,并免费提供了40多个行业。DRDO的科学家K Veerabrahmam博士和他的团队开发了这项技术。基于PBAT的可生物降解包装提供了一种环保替代品,而不会损害质量。这些袋子在三个月内分解,没有有害残留物。与普通的聚乙烯袋相比,每公斤的生产成本约为160至180卢比,每公斤140卢比。“ DRDO及其合作伙伴旨在扩大生产和分销。这种方法可确保这种环保解决方案的好处吸引广泛的受众。”这些袋子现在用于分发tirupati laddus。DRDO主席Satish Reddy,以及Tirumala Tirupati Devasthanam(TTD)执行官Dr.Ks Jawahar Reddy和其他EO AV Dharma Reddy在Tirumala启动了一个独家销售柜台。该飞行员是在旅游目的地,沿海地区和其他地区进一步实施的模型。可生物降解的材料可用于医疗垃圾袋,围裙,垃圾袋,苗圃袋,收缩膜和包装膜。这项技术的专利正在进行中。https://www.deccanchronicle.com/southern-states/telangana/drdo-shares-biodegradable-packaging-tech-with-40-industries-1814691https://www.deccanchronicle.com/southern-states/telangana/drdo-shares-biodegradable-packaging-tech-with-40-industries-1814691
图1:包装材料要求。.............................................................................. 9 Figure 2: PHAs Structure (Gomes Gradíssimo et al., 2020) .................................................... 12 Figure 3: PHBV structure (Boufarguine et al., 2013) .............................................................. 14 Figure 4:PLA structure (Boufarguine et al., 2013) .................................................................. 15 Figure 5:PBAT structure (Nobrega et al., 2012) ...................................................................... 19 Figure 6:Physical modification through blending will be used in our current project............. 23 Figure 7:Polymer blending ....................................................................................................... 24 Figure 8:Thermo Fisher Process 11 Extruder........................................................................... 25 Figure 9:Injection moulding ..................................................................................................... 25 Figure 10:conveyor belt section.41 Figure 24:TGA weight results 50%:50% blends ...................................................................... 41 Figure 25:TGA Derive weight, neat materials......................................................................... 42 Figure 26:TGA Derive weight 75%:25% blends..................................................................... 42............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... ..................................................................................................................................................................................................................................................................................................................................................................................................................................... 75%的结晶度:25%混合物................................................................................................................................. ............................................................................... 34 Figure 17: Enthalpy cure for 75%:25% blends .................................................................................................................................................. 34 Figure 18: Enthalpy curve for 50%:50% blends ...................................................................... 34 Figure 19:FTIR neat materials ................................................................................................. 37 Figure 20:FTIR results, PHBV & PLA blends ........................................................................ 37 Figure 21:FTIR results, PHBV & PBAT blends ...................................................................... 38 Figure 22:TGA weight results, neat materials ......................................................................... 41 Figure 23: TGA weight results 75%:25% blends .