前列腺癌(PCA)在发达国家中越来越普遍。局部PCA存在有效的治疗选择,但是转移性PCA的治疗选择较少,并且患者的生存率较短。PCA和骨骼健康紧密地交织在一起,因为PCA通常转移到骨架上。由于雄激素受体信号传导驱动PCA生长,因此后遗症降低骨骼强度构成了晚期PCA治疗的基础。骨骼重塑的体内平衡过程 - 由骨建造成骨细胞,骨质骨细胞和调节性骨细胞的一致作用产生。驱动骨骼发育和稳态的机制,例如区域缺氧或基质填充的生长因子,可以被骨转移性PCA征服。以这种方式,维持骨骼的生物学被整合到PCA在骨中生长和存活的自适应机制。由于骨骼生物学和癌症生物学的纠缠性质,骨骼转移性PCA很难进行研究。在此,我们从起源,表现和临床治疗中调查PCA到PCA转移对骨的骨组成以及结构以及分子介质。我们的目的是快速却有效地减少了跨多个学科的团队科学障碍,该学科的重点是PCA和转移性骨病。我们还介绍了组织工程的概念,作为一种新颖的观点,以建模,捕获和研究复杂的癌症微环境相互作用。
(a)与RTL功耗分析有关,ANSYS通过资产转移剥离的整个全球业务包括研究,开发,分发,许可,销售,销售,销售,营销,商业化和以其他方式提供ANSYS的RTL功耗分析(PCA)产品(PCA Diventist Business Business Business to the PCA Divistment Business)(PCA Divistment Business),或者是PCA Divisters to to to keysigh to keysigh to keysight to keysight to keysight(keysight)。PCA撤资业务将包括与PowerArtist相关的所有必要资产,包括商业合同,知识产权(IP),软件和业务记录,以及至少在产品管理,研发和应用程序工程职能的范围内[]人员。2024年12月21日,Keysight和Ansys签订了有约束力的协议,以将PCA撤资业务出售给Keysight,但要获得CMA的批准。
骨转移显着导致前列腺癌患者观察到的不利预后。Myb原始癌基因(MyBl2)被确定为与肿瘤进展有关的潜在靶基因。尽管如此,MyBl2在前列腺癌(PCA)骨转移中的致癌作用和潜在机制尚未阐明。生物信息学分析用于识别转移性PCA关键的基因。随后,在体内进行了一系列体外的分子生物学实验,并在体内进行了PCA骨转移模型,用于验证MYBL2的促抗转移效应和基本机制。生物信息学分析确定了72个基因的候选基因,该基因用于建立PFS预后模型,突出了16个关键基因。基于这16个关键基因的表达,将来自TCGA数据库的498例PCA患者分为四个亚组。C1和C4亚组中的患者预后较差。 通过与C2和C3队列相比,通过分析来自C1和C4队列的测序数据,我们将MYBL2确定为转移性PCA中的关键预后基因。 值得注意的是,我们发现MYBL2在转移性PCA中显着表达,并且与预后不良正相关。 的机理研究表明,MYBL2过表达促进了PCA细胞的侵袭和EMT,而Notch3敲低部分废除了这一点。 此外,MYBL2过表达可以促进PCA异种移植生长和体内骨转移。 这项研究发现PCA中的MYBL2过表达与转移和预后不良呈正相关。C1和C4亚组中的患者预后较差。通过与C2和C3队列相比,通过分析来自C1和C4队列的测序数据,我们将MYBL2确定为转移性PCA中的关键预后基因。值得注意的是,我们发现MYBL2在转移性PCA中显着表达,并且与预后不良正相关。的机理研究表明,MYBL2过表达促进了PCA细胞的侵袭和EMT,而Notch3敲低部分废除了这一点。此外,MYBL2过表达可以促进PCA异种移植生长和体内骨转移。这项研究发现PCA中的MYBL2过表达与转移和预后不良呈正相关。MYBL2通过激活Notch3促进了PCA骨转移。针对MYBL2/NOTCH3轴可以帮助防止转移性PCA。
前列腺癌(PCA)是男性泌尿生殖系统最常见的肿瘤。最终将发展为致命的转移性cast割前列腺癌,治疗方案受到限制。脂肪组织分布在人体的各个部位。它们具有不同的形态结构和功能特征,并且与各种肿瘤的发展有关。腹膜脂肪组织(PPAT)是最接近前列腺的白色内脏脂肪组织,是PCA肿瘤微环境的一部分。研究表明,PPAT通过多个活性分子的分泌参与PCA发育,进展,侵袭和转移。肥胖,饮食,运动和有机氯农药等因素可以间接或直接通过PPAT影响PCA的发展。基于PPAT参与调节PCA的机制,本综述总结了PCA的各种诊断和治疗方法,并具有潜在的应用,以评估患者疾病的进展并改善临床结果。
前列腺癌 (PCa) 是男性中第二常见的癌症。虽然根治性前列腺切除术和放射疗法通常可以成功治疗局部疾病,但治疗后复发很常见。由于雄激素受体 (AR) 和雄激素在前列腺癌变和进展中起着至关重要的作用,因此雄激素剥夺疗法 (ADT) 通常用于剥夺 PCa 细胞的雄激素促增殖作用。ADT 通过阻断雄激素生物合成(例如阿比特龙)或阻断 AR 功能(例如比卡鲁胺、恩杂鲁胺、阿帕鲁胺、达洛他胺)起作用。ADT 通常在最初抑制 PCa 生长和进展方面有效,但 ADT 后出现去势抵抗性 PCa 和进展为神经内分泌样 PCa 是主要的临床挑战。因此,迫切需要找到调节雄激素信号的新方法,以阻止 PCa 进展,同时防止或延迟治疗抵抗。雄激素和表观转录组信号传导的机制融合为治疗 PCa 提供了一种潜在的新方法。表观转录组涉及 mRNA 的共价修饰,特别是在本综述中提到的 N(6)-甲基腺苷 (m 6 A) 修饰。m 6 A 参与调节 mRNA 剪接、稳定性和翻译,最近已被证明在 PCa 和雄激素信号传导中发挥作用。m 6 A 修饰受含 METTL3 的甲基转移酶复合物以及 FTO 和 ALKBH5 RNA 去甲基化酶的动态调节。鉴于需要新的方法来治疗 PCa,人们对针对调节 AR 表达和雄激素信号传导的 m 6 A 的新疗法产生了浓厚的兴趣。本综述严格总结了此类表观转录组疗法对 PCa 患者的潜在益处。
手术期间,前列腺癌(PCA)肿瘤边缘的成功可视化仍然是一个主要挑战。通过近红外荧光(NIRF)成像对这些肿瘤的可视化将大大增强手术切除,最大程度地减少肿瘤复发并改善预后。此外,手术后通常对患者进行化疗,以治疗手术区域周围的肿瘤组织,从而最大程度地减少转移并增加患者的生存率。由于这些原因,可以开发一种疗法的荧光纳米颗粒来帮助可视化PCA肿瘤边缘,同时还可以在手术后提供化学治疗药物。方法:偶联的荧光染料和PCA靶向剂Heptamethine carbocyanine(HMC)结合使用的铁氧基(FMX),产生了HMC-FMX纳米探针,该纳米螺旋体经过各种PCA细胞系在体外进行了测试,并具有各种PCA细胞系,并在vivo中与vivo ca ca cautcutipatane和Orthotanosic PCA模型进行了测试。进行HMC-FMX后通过NIRF成像对这些肿瘤的可视化。 此外,还评估了化学治疗药物的递送及其对肿瘤生长的影响。 结果:HMC-FMX内部化为PCA细胞,将这些细胞和PCA肿瘤标记为近红外荧光,促进肿瘤边缘可视化。 HMC-FMX还能够向这些肿瘤输送药物,减少细胞迁移并减缓肿瘤的生长。 结论:HMC-FMX专门针对小鼠的PCA肿瘤,可以通过NIRF成像可视化肿瘤边缘。进行HMC-FMX后通过NIRF成像对这些肿瘤的可视化。此外,还评估了化学治疗药物的递送及其对肿瘤生长的影响。结果:HMC-FMX内部化为PCA细胞,将这些细胞和PCA肿瘤标记为近红外荧光,促进肿瘤边缘可视化。HMC-FMX还能够向这些肿瘤输送药物,减少细胞迁移并减缓肿瘤的生长。结论:HMC-FMX专门针对小鼠的PCA肿瘤,可以通过NIRF成像可视化肿瘤边缘。此外,HMC-FMX递送抗癌药有效地降低了前列腺肿瘤的生长并减少了细胞迁移的体外。因此,HMC-FMX可以潜在地转化为诊所作为纳米疗法的术中PCA肿瘤边缘术中可视化的纳米疗法药物,并用加载抗癌药物的HMC-FMX对肿瘤进行术后治疗。
摘要:前列腺癌(PCA)经常变得耐药,对有效的管理提出了重要的挑战。尽管对雄激素剥夺治疗的初始治疗可以控制晚期PCA,但随后的耐药机制允许肿瘤细胞继续生长,需要采取替代方法。这项研究深入研究了不同PCA亚型的特定代谢依赖性,并探讨了结合雄激素受体(AR)抑制(ARN具有线粒体复合物I抑制(IACS))的潜在协同作用。我们检查了正常前列腺上皮细胞(PNT1A),雄激素敏感细胞(LNCAP和C4-2)的代谢行为以及与雄激素独立的细胞(PC-3)使用ARN,IACS或组合时。结果发现了跨PCA亚型的不同线粒体活性,雄激素依赖性细胞表现出增强的氧化磷酸化(OXPHOS)。在多个PCA细胞系中,ARN和IACS辅助细胞增殖的结合。细胞生物能分析表明,IACS减少了OXPHOS,而ARN阻碍了某些PCA细胞中的糖酵解。另外,送乳糖补充破坏了代谢重编程引起的补偿性糖酵解机制。值得注意的是,葡萄糖抑制条件提高了PCA细胞对线粒体抑制的敏感性,尤其是在抗性PC-3细胞中。总体而言,这项研究阐明了PCA中AR信号传导,代谢适应性和治疗耐药性之间的复杂相互作用。这些发现提供了对亚型特异性代谢纤维文件的有价值的见解,并提出了一种有前途的策略,通过利用其代谢脆弱性来靶向PCA细胞。
抗癌药物敏感性的预测是个性化医学的主要挑战。在本文中,CCLE被用作抗癌药物易感性研究的数据集,并选择了基因的数据数据和不同细胞系上的药物敏感性数据。同时,我们签署了一种称为PCA变压器(PCAT)的混合深度学习和机器学习方法,以预测抗癌药物的敏感性。首先,构建了PCA模型以在不同细胞系上提取基因表达数据中的重要变量,因此将约50,000的基因维度降低到500。然后,基于降低性降低基因表达值建立了神经网络变压器模型,以预测药物敏感性,通过均方根误差(RMSE)评估我们的模型的功能,并使用最佳的潜在变量来评估模型估计值。为了验证PCA变压器的性能,本文将变压器模型与前字典模型随机森林(RF)和支持向量回归(SVR)进行了比较。特定组合Include:PCA变压器,PCA + SVR,PCA + RF。最后,将结果与先前的研究方法(ISIR)的结果进行了比较和优化。最终预测结果表明,对于CCLE中的24种药物,该方法预测的平均RMSE为0.7564、6种药物的RMSE小于0.5(L-685458,PF2341066等)。)和18种药物小于1。预测方法的平均RMSE为0.8284(PCA + SVR),0.8757(PCA + RF)和ISIRS(0.9258),表明所提出的方法具有更强的概括能力。
尽管付出了巨大的努力,成功治疗胰腺癌 (PCa) 仍然是一项重大挑战 [1]。找到重新编程肿瘤微环境中动态肿瘤促进相互作用的方法将有助于通过比传统化疗更有效、毒性更小的方法来改善这种可怕的疾病(图 1)[2]。在过去十年中,新辅助疗法与传统化疗相结合已显著改善了包括 PCa 在内的局部晚期肿瘤的预后 [3-5]。事实上,多达 60% 的局部晚期 PCa 患者在接受新辅助化疗后可切除 [6],可切除 PCa 的新辅助治疗的初步结果令人鼓舞 [7]。到目前为止,PCa 的新辅助治疗并不采用分子靶向疗法,而是采用 FOLFIRINOX 等经典方案,但依赖于基质白蛋白受体可用性的白蛋白结合型紫杉醇除外。在其他肿瘤实体中提供持久反应的分子靶向疗法在 PCa 中并未产生预期结果 [8]。以免疫检查点抑制剂 (ICI) 和癌症疫苗为首的癌症免疫疗法已在许多实体恶性肿瘤中显示出显著的长期疗效 [9]。免疫疗法在 PCa 上取得的成功有限,主要是由于肿瘤突变负担低和存在
摘要:前列腺癌(PCA)是最常见的实体瘤,是2020年美国男性CER相关死亡的第二大原因。雄激素剥夺疗法(ADT)是转移性PCA的护理标准。不幸的是,PCA复发经常发生在ADT启动后一到两年,导致耐致命的PCA(CRPCA)(一种致死性疾病)的发展。虽然目前利用多种抗癌药,例如多西他赛,乙酸阿比罗酮和enzalutamide在CRPCA发育后延长患者的寿命,但患者最终会屈服于该疾病。因此,在靶向多西他赛的雄激素信号传导和利用率仍然是许多这些组合的最关键剂,但许多研究正在试图利用PCA细胞的其他脆弱性,例如抑制关键生存蛋白,抗血管生成剂,抗血管生成剂和免疫治疗。本综述将重点讨论针对治疗的最新进展。还将讨论几个新型的小分子。