摘要:我们已经对聚(3-己基噻吩)(P3HT)(P3HT)和[6,6] - 苯基C61丁基甲基甲基酯酯活性层活性层活性层散装散装量量形的理论入射光子到电流(IPCE)作用光谱。通过玻璃基材/SIO 2/ITO/PEDOT的结构的二维光学模型:PSS/P3HT:PCBM(1:1)/CA/AL,该设备的光响应已计算出针对不同的光活性层和CA层的厚度,从而可以找到最大的设备构造,从而可以在最大程度上效率地效果,从而获得了最大的效果效果,从而可以在上位效果,从而获得最大的效果。已经计算出电场强度,能量耗散,发电速率和IPCE,以提高设备的性能。有限元方法在1.5 AM照明的100 mW/cm 2的入射强度下执行模拟。发现,最佳结构是通过180 nm光活性层和5 nm Ca层厚度实现的。
390 Interlocken Crescent,Suite 500•Broomfield,Co 80021 USA | 303-530-1925 Sierraspace.com/spaceflight-hardware-catalog |电子邮件:spaceapps@sierraspace.com警告 - 本文档不包含由国际武器法规(ITAR)或出口管理法规(EAR)定义的技术数据或技术。本文讨论的产品和技术的出口,销售和产品得到美国政府的批准。
我们研究聚[n-9'heptadecanyl-2,7-甲基巴唑-Alt-5,5-5-(4',7'di-2- thienyl-2',1',1',3',3'-苯并硫醇)](PCDTBT)(PCDTBT):[6,6,6] -propinyl-procnyl-procnyyl-procnyyyyyyyyyanyyyyy(ppot), LMS在紫外线照射下及其光氧化,热和电性能。我们将它们的稳定性和性能与通过集成石墨烯纳米片(GNP)获得的复合材料进行比较。与原始聚合物相比,在PCDTBT:PCBM:GNPS中观察到光吸收和光致发光的增加。这表明通过基于CH-π和ππ相互作用的界面键合,从共轭聚合物到GNP的空状态的电子转移,从而降低了活性层的光降解。这是由于光氧化的显着下降而表现出来的,然后改善了热稳定性和抑制PCBM分子的相位分离和聚集。PCDTBT的原子力显微镜成像:PCBM:GNPS纳米复合材料表明,石墨烯含量增强了聚合物结构的顺序。最后,我们讨论了GNP含量对光活性层的电导率和电子迁移率的影响。我们的发现提供了对混合有机散装 - 杂结太阳能电池的PV特性和照片物理学的显着见解,为增强其耐用性和长期性能铺平了道路。©2020作者。由IOP Publishing Limited代表电化学学会出版。[doi:10.1149/1945-7111/abb6ce]这是根据Creative Commons Attribution 4.0许可(CC by,http://creativecommons.org/licenses/ by/4.0/)分发的开放式访问文章,如果原始工作适当地引用了原始作品,则可以在任何媒介中不受限制地重复使用工作。
完整作者名单:Munshi, Joydeep;里海大学,机械工程系 Chien, TeYu;怀俄明大学,物理与天文学系 Chen, Wei;西北大学 Balasubramanian, Ganesh;里海大学,机械工程系;里海大学,