在分散的能量电推进(深)项目中,开发了微波加热的等离子体推进器。推进器与电池和超级电容器结合间歇性地操作。这允许使用电池和太阳能电池板系统,旨在在卫星本身上具有较低功率,并减少整体质量,从而增加可用的有效载荷质量和功率。由于间歇性操作,推进器需要快速和可靠,而每个射击只能持续τ= 10-600 s,具体取决于占空比和必要的速度增量∆ V。推进器本身由与等离子体加速的磁喷嘴组合中的电子环体共振(ECR)放电组成。因此,加速血浆是准中性的,无需中和。侵蚀被最小化。除推进器外,流量管理系统(FMS)和电源控制和分销单元(PCDU)是从商业现成的组件开发的。
本文介绍了纳米 - 卫星外部太阳辐射系统的单个事件闩锁检测(SEL)检测。在这项研究中,使用电路测试和仿真进行了SEL检测分析。电力子系统(EPS)是所有立方体总线子系统的一部分,它包括太阳阵列,可充电电池和电源控制和配电单元(PCDU)。为了提取太阳阵列产生的最大功率,需要一个峰值功率跟踪拓扑。这可能会导致SEL,并存在太阳能产生的高压。要克服SEL问题,必须进行电路测试和仿真,以便可以轻松检测和减轻SEL的流动。使用的方法是使用微控制器,将在特定时间内创建SEL。可编程的集成电路(PIC)用于减轻SEL效果。表明,SEL发生在特定时间内非常快。当使用Spenvis进行仿真时,结果显示,仅在UITMSAT-1上影响单个事件障碍(SEU)。
固体激光冷却是一项突破性技术,能够以微型方式将温度无振动冷却至 100 K。它似乎是一种很有前途的技术,可以提高未来观测卫星的性能,例如在 SWIR 和 NIR 领域。本文首次研究了在观测卫星上集成激光冷却器。我们的研究侧重于卫星有效载荷和平台级别的尺寸、重量和功率 (SWaP) 标准。其目标是评估在低地球轨道 (LEO) 红外观测任务中使用光学低温冷却器而不是机械低温冷却器的兴趣。提出了一种初步的空间激光冷却器 (LC) 架构。它由两部分组成。第一部分是冷却头,基于最先进的冷却晶体 10%Yb:YLF 和像散多通腔。第二部分是低温冷却器光电子学,基于耦合到冷却头的冗余激光二极管和光纤。考虑到红外探测器的热负荷和低温恒温器内的寄生热通量,估算了小焦平面的冷却功率。然后考虑到晶体效率、热链接损耗和光电效率,估算激光冷却器所需的光功率和电功率。假设一个为期 5 年的 LEO 微卫星任务,则对电力系统(PCDU、太阳能电池阵列、电池)和热控制系统(热管、散热器)进行尺寸计算。增加了额外的质量裕度以考虑机械支撑结构。最后,分别将有效载荷和平台的质量和体积相加,以获得卫星级别的 SWaP 平衡,代表激光冷却器的整体影响。在相同的任务和平台假设下,对微型脉冲管冷却器 (MPTC) 架构重复了该研究。最后,对这两种架构进行了比较。结果表明,即使激光冷却器的功率要求很高,质量和内部体积的减小也使得小型卫星有效载荷成为可能。