我国电力供应虽然相对稳定,但电力负荷峰谷电差较大,特别是近年来气候变化引起的用电高峰不断攀升,加剧了电力供需在空间和时间上的不平衡,给电网调峰、生活及工业用电带来严峻挑战[1]。建筑运行用电约占全社会用电的1/4,而热水器用电又占家庭总用电的20%~40%,每年热水器用电量达400~600亿kWh[2,3],参与电网调峰潜力巨大。相变储能材料具有较高的储能密度[4],可有效提高热水器效率,降低运行成本,缓解电力供需不匹配问题。对于四种相变材料——固-液相变材料、液-气相变材料、固-固相变材料和固-气相变材料而言,后三种相变材料的储热密度小、相变过程中体积变化大、压力高等缺点阻碍了这三种相变材料的应用
随着近年来建筑物的能源消耗的增加,在建筑行业有效地使用能源已经变得迫切了。相变材料(PCM)可以通过吸收或释放大量热量来调节环境温度,当周围温度变化,具有高能量存储密度的优势和降低温度波动的优势,[1]已成为研究构建能源效率的热点。将PCM组合到建筑物中可以有效地改善建筑物的热舒适度,并将峰值电荷转移到非高峰期,从而减少电能消耗以实现建筑物中高能效率。[2]通常,应用于建筑能源效率的PCM主要包括无机PCM,有机PCM和复合PCM。[3]根据设计机制,相变材料在建筑能源效率中的应用主要反映在两个方面:被动建筑能源设计和主动建筑能源设计(图1)。
相变材料或 PCM 是一种非常了不起的化合物,其独特的可切换特性推动了电子和光子学领域新兴应用的蓬勃发展。尽管如此,如果我们不考虑它们在光盘中的应用,PCM 在数据记录之外的光子学领域的巨大应用潜力在过去十年才开始显现。虽然几十年前光学或电子数据存储的材料要求被简洁地概括为五个关键要素“可写性、档案存储、可擦除性、可读性和可循环性”,但这些要求对于目前正在探索的各种光子应用来说并不是普遍适用的。同样不足为奇的是,现有的 PCM 已经经过了严格的数据存储审查,但它们不一定是光学和光子学中不同用例的最佳组合物。因此,随着相变光子学的不断扩展,具有针对特定应用量身定制的属性的 PCM 需求旺盛。在这里,我们讨论了专门针对光子应用的 PCM 选择和设计策略,以及我们最近基于针对光子学的新 PCM 开发有源集成光子器件和超表面光学器件的工作。
传热强化与优化对于相变材料 (PCM) 储热设计至关重要。本文对填料床 PCM 储热单元设计的性能优势进行了比较分析,并对填料床单元关键几何参数的影响进行了数值研究。以六边形圆形结构优化后的管壳式设计作为比较的基准。研究发现,床层与 PCM 胶囊直径比 D / d 存在阈值,超过该阈值时,填料床的有效储能容量将高于最佳管壳式单元。D / d 的阈值可以与传热流体的表观速度定量关联,为定制设计填料床 PCM 储热系统提供了途径。总之,研究发现,填料床单元由于其较大的表面积体积比而具有优势,尤其是在大规模应用中。本研究提出了一种基于数值分析的框架来设计填料床 PCM 存储单元,并与管壳式单元进行比较,以便可以在特定的几何和操作条件下选择合适的 PCM 热存储设计类型。
摘要:考虑到高水平的热量和曝光型枪手遇到他们的工作活动时,个人保护设备(PPE)对于提高安全性至关重要。相变材料(PCM)被称为能够吸收大量热能的高级材料,并有可能增加保护服装的热性能。在这项工作中,第一次开发了PCM-Vest,并评估了其热性能。采用了三阶段的方法:(1)在实验室的小规模上,评估了不同封装的PCM对多层组装性能的影响; (2)在实验室中,评估了热量和洪水测试的基本要求; (3)在模拟的城市火灾中,研究了三种不同的PCM率(不同的纺织品和设计)的热性能。作为主要结论,PCMS显着影响了多层组件的加热速率,尤其是当使用具有较高潜热的PCM时。在某些情况下,与没有PCM的样品相比,传热指数(HTI)加倍。作为缺点,正如预期的那样,冷却时间增加了。PCM-VEST样品确保了热量和电流测试的要求。通过这项研究,可以突出显示使用PCM来增强常规PPE的热保护的积极影响。
本文通过将相变材料(PCM)纳入建筑物供应气管中,以增加建筑物的热存储能力,从而提出了一种新颖的储能解决方案。与PCM集成壁相比,该解决方案具有各种优势,包括更有效的传热(强制对流和更大的温度差异)。在非高峰时段,系统以供应空气温度在材料的凝固点以下以冷却能量为PCM充电。在高峰时段,使用较高的供应空气温度,以便可以将存储的能量排放到供应空气中。这将建筑物的冷却负载的一部分从峰值的小时转移到非高峰时段。使用实验数据开发并修改了导管中PCM熔化和凝固的数值模型。通过将PCM模型与simulink共模拟平台中的能量全型DOE结合到EnergyPlus典型建筑模型来进行整个构建能量模拟。模拟,而PCM存储将On-Peak的能源消耗降低了20-25%。使用当前使用时间的电力率确定电力成本和投资回收期。
大多数增材制造 (AM) 工艺都需要后处理操作。对于生产部件,在设计过程中考虑这些后处理操作对于满足设计要求至关重要。对于金属和聚合物部件,工艺链中的步骤顺序可能非常广泛。本文介绍了一种称为工艺链图 (PCM) 的设计框架,该框架明确将部件的设计要求与 AM 工艺链中的每个步骤联系起来。该 PCM 直观地显示了工艺链中每个步骤的作用,并促进了设计和制造人员之间的沟通。PCM 的软件实现可以生成多学科设计优化问题的系统级问题公式。金属 AM 部件的示例展示了 PCM 和此类设计问题的公式。
摘要:可以通过最大程度地减少电池热管理系统(BTM)的质量来增强电池组的电池组,这是电固定翼翼应用程序的限制。在本文中,在3D域中对BTMS的使用相变材料(PCM)进行数值探索,包括等效电路电池模型。针对有效的热管理的PCM特性的参数研究是针对典型的一小时传播的。PCM在整个电池组中保持理想的工作温度(288.15 K – 308.15 K)。PCM吸收起飞过程中产生的热量,随后用于在战的巡航阶段保持细胞温度。在控制案例(无BTM)中,电池组温度低于理想工作范围以下。我们进行了一项参数研究,强调了PCM热导率对BTMS性能的微不足道,并且在测试的窗口上观察到可忽略不计的增强(0.1-10 W m -1 K -1)。但是,PCM的潜在融合热量至关重要。PCM的开发人员用于电池供电的流量,无论对导热率的不利影响如何,都必须专注于增强的潜在融合热。在长途旅行中,延长的巡航阶段和较高的海拔刺激了这个问题。PCM的独特特征提供了一种被动的低质量解决方案,值得对流量应用进行进一步研究。
为了降低数据写入的能量消耗,迫切需要开发新型存储材料。为了开发用于非挥发性存储器(如存储级存储器)的具有极低操作能量的新型相变材料 (PCM),我们通过数值模拟对 PCM 的物理特性进行了贝叶斯优化。在该数值模拟中,同时求解了电势和温度分布。研究发现,具有低热导率、低熔化温度以及低接触电阻与体积电阻之比的 PCM 会导致基于 PCM 的存储器应用的操作能量较低。最后,我们开发了 PCM 的设计策略。应通过降低操作能量 E 来开发新型 PCM,描述为 E = j (1 + C ) DT / D z ,其中 j 是 PCM 的热导率,DT 是熔化温度,C 是接触电阻与体积电阻之比,D z 是 PCM 的厚度。本研究结果阐明了热性能和电性能之间的关系,从而降低了以前研究中隐藏的操作能量。根据设计策略,与传统的 Ge-Sb-Te 化合物相比,相变存储器应用中的操作能量可以降低到 1/100 以下。2022 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY 许可证开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。
当板载时钟锁定到输入频率时,锁定指示位被设置,并且可以通过 L3 总线或 I 2 C 总线接口读取。在内部,PLL 锁定指示可以与输入数据流的 PCM 状态位以及是否检测到任何突发前导的状态相结合。默认情况下,当 IEC 60958 解码器和板载时钟都锁定到输入信号并且输入数据流是 PCM 数据时,将断言引脚 LOCK。但是,当 IC 被锁定但 PCM 状态位报告非 PCM 数据时,引脚 LOCK 将返回到低电平。锁定状态和 PCM 检测的这种组合可以被 L3 总线或 I 2 C 总线寄存器设置否决。