时间轴:开始日期:4/1/2020计划结束日期:5/31/2022关键里程碑(插入2-3个关键里程碑和日期)1。开发了基于鱿鱼齿齿(SRT)的新型生物PCM,其室温存储和导热率开关功能2。缩放绿色,SRT PCM的碳中性制造3。开发了新的调节工具,以测量薄膜PCM的热导率和能量存储密度:
可重新配置或可编程的光子设备正在迅速增长,并且已成为许多光学系统的组成部分。通过电刺激选择性调节电磁波的能力对于从数据通信和计算设备到环境科学和空间探索的各种应用的发展至关重要。基于粉红色的相变材料(PCM)是可重新配置光子学的最有前途的材料之一,因为它们在不同的固态结构相之间具有较大的光学对比度。尽管已经致力于准确地模拟基于PCM的设备的努力,但是在本文中,我们突出了三个重要方面,这些方面经常逃避先前的模型,但对这些设备的热和相转换行为产生了重大影响:融合的触发剂:热容量的触发,玻璃过渡时的热量变化,以及液态频率PCM的热电导率。我们进一步研究了在PCM设备中切换能量缩放的重要主题,这也有助于解释为什么在电子PCM记忆中长期以来一直忽略了上述三种效应,但仅在光子学中变得很重要。我们的发现提供了洞察力,可以促进基于PCM的光子设备的准确建模,并可以告知更有效的可重构光学元件。
制药连续制造(PCM)是AMT的一种新兴形式,有可能提高制造效率,降低生产成本并通过推进国内生产来使供应链多样化。但是,PCM的采用总体上的采用速度很慢,尤其是在制造仿制药的公司中,主要是由于经济,监管和劳动力能力挑战。本文介绍了相关的背景,描述了采用PCM的挑战,并提出了政策解决方案,以帮助推动美国PCM采用。如USP最近的公共政策立场文件所述,制定了制定更弹性的供应链的政策,可以帮助确保继续为患者提供安全,优质的药物,即使在大流行或其他危机时期也是如此。
PCM 在潜热存储应用中的主要问题之一是提高热导率。已经进行了一些理论和实践研究来检查各种潜热存储系统的传热过程 [30]。目前,提高 PCM 热导率的主要方法是添加高热导率基质和化学改性添加剂的表面。这些包括表面和接枝功能团改性,以及添加多孔三维 (3D)、二维 (2D)、一维 (1D) 和零维 (0D) 结构添加剂。虽然改性和接枝功能团可以增加材料相容性并降低界面热阻,但改性的成功率较低且操作更复杂。加入导热基质可以形成导热链,从而减少声子散射并加快热量传输。另一方面,较高的添加剂质量含量将大大限制 PCM 的储热能力。因此,在选择提高 PCM 热导率的技术时,应考虑适当的添加量和实验条件。
相变材料(PCM)存储并在相变过程中释放能量。近年来,由于其出色的特性,例如高潜热储能能力,适当的固定液相变温温度,热可靠性和低成本,PCM引起了越来越多的关注。Herein, classification, characteristics, and evaluation criteria of organic/composite PCMs are systematically illustrated, and some typical preparation methods are introduced, such as in-situ polymerization, interfacial polymerization, spray drying method, porous materials adsorption method, sol-gel method, melt- impregnated and mixing method, electrospinning method, vacuum infiltration and ultrasonic method are introduced.此外,本综述还提出了PCM在太阳能,建筑材料,空调,工业废物热恢复以及军事伪装和隐身利用中的一些应用。最后,讨论了PCM的开发趋势。关键字:相变材料(PCM);热量储能;准备方法;应用。收到:2020年7月18日;接受:2020年8月25日。文章类型:评论文章。
化石燃料已在社会各个方面广泛使用。然而,近年来,由于世界化石能源在世界范围内的不足供应,太阳能的有效使用和新的储能材料的准备已成为全球问题。1 - 4全球经济发展和人口增长将导致持续的能源危机。太阳能是世界上最有希望的可再生能源之一,但其应用受到许多特征,例如间歇性和无法控制的特征。幸运的是,相变材料(PCM)可以通过改变相位状态来存储潜热,并在需要时释放能量,5,6和太阳能和PCM的组合创建了一个非常适合增加太阳能利用率的潜热存储系统。当温度达到PCM的熔点时,PCM可以融化以潜热的形式储存热量,当温度低于熔点以下时,PCM可以凝固以将潜热释放回热量存储层。既可以在白天和夜间之间降低热存储系统的最高温度差异,又可以增加太阳能热储存系统的热量存储能力。因此,已广泛研究了适合太阳能的相变材料。7 - 11
对于固/液相变,相变材料 (PCM) 可细分为两大类:无机物质和有机物质。7 无机物质包括盐水合物、盐、金属和合金,而有机物质包括石蜡、非石蜡和多元醇。有机非石蜡包括多种物质,如脂肪酸。此外,无机和/或有机物质的共晶混合物也可用作 PCM。8 大量有机和无机物质的熔点在技术相关范围内,且熔化焓较大。然而,除了具有合适的熔点外,大多数 PCM 都不符合合适存储介质的标准 9,因为它们的熔化焓太低、具有腐蚀性或价格太贵。Zalba 等人最近对合适的 PCM 进行了概述。10 在本研究中,我们重点关注盐水合物。与石蜡和脂肪酸类似,它们的熔化温度在 0°C 至 100°C 之间。脂肪酸被排除在外,因为它们的价格比石蜡高出三倍。8 与石蜡相比,盐水合物有几个优点 11 :
相变内存(PCM)是一种非易失性存储技术,被认为是存储类内存和神经启发设备的最有前途的候选人。通常是根据Gete制造的 - SB 2 TE 3伪二元合金。但是,它具有技术局限性,例如电阻的噪声和漂移以及用于现实世界设备应用的高电流。最近,在记忆细胞中使用功能性(屏障)材料异质化材料的异质结构化PCM(HET-PCM),通过降低此类固有限制,在设备性能中表现出巨大的增强器件性能的增强。从这个角度来看,我们与常规合金型PCM相比,介绍了HET-PCM的最新发展和相关的操作机制。我们还突出了相应的设备增强功能,尤其是它们的热稳定性,耐力,复位电流密度,设定速度和电阻漂移。最后,我们为HET-PCM的有希望的研究方向提供了前景,包括基于PCM的神经形态计算。
(3)隐私持续监控(PCM)计划,负责持续了解可能造成隐私风险的威胁和漏洞。PCM 制定了部门实施美国国家标准与技术研究院(NIST)发布的指导方针所定义的隐私控制的流程。PCM 进行持续的隐私控制评估,以验证所选隐私控制的有效性;提供评估是否符合适用法律、法规和政策要求的工具和流程,并为被分配隐私合规角色和职责的员工和承包商提供定制培训。
*ESS:能量储存系统(LiFePO4 电池)。 *TES:热能储存(热水箱或 PCM(相变材料))。 *高达 80-90% 的能源自给率:例如,对于 20kWh 的存储需求,最大化投资回报率的最有效方法是配置 10kWh ESS + 10kWh PCM(相当于 2,000L 的热储存)。