简介 - DNA指纹是一种革命性的分子技术,用于根据其独特和变异的遗传模式来识别个体。通过DNA指纹识别,我们发现基因组中卫星DNA区域之间的差异。这些卫星DNA区域是重复的DNA的拉伸,未针对任何特定蛋白质编码。它们以丰富的形式存在,并用于人类的DNA分析,因为它们描绘了很高的多态性,并且已知是DNA指纹的基础。这项技术是由Alex Jeffrey在1984年发现的,自发现以来,已彻底改变了法医学,父亲鉴定,医学诊断和进化研究。DNA指纹识别的另一个名称是DNA分析,因为它根据脱氧核糖核酸DNA的特定区域中的独特基因组成来识别个体,特别是短串联重复率。有几种可以在限制片段长度的帮助下用于DNA Brina的方法
∗剑桥大学的MRC生物统计局。JB得到Bayes4Health(EPSRC EP/R01856/1)的支持。JB,PB和DDA得到了英国医学研究委员会(MRC)计划MRC_MC_UU_00002/11的支持。pb,th和dda由Wellcome Trust(227438/Z/23/Z)提供支持。ASW和KBP得到了美国国家健康研究所(NIHR)卫生保护研究部门的卫生保健相关感染和抗菌素抵抗,并在牛津大学与英国卫生安全局(UKHSA)(NIHR200915)合作。ASW得到了牛津NIHR生物医学研究中心的支持。KBP得到HUO家庭基金会和医学研究基金会(MRF-160-0017-ELP-POUW-C0909)的支持。BDMT通过MRC计划赠款(MC_UU_00002/2)和主题资金(MC_UU_0002/20-精密医学)支持BDMT。为了开放访问,作者已将创意共享归因(CC BY)应用于任何作者接受的手稿版本。†英国卫生安全局;剑桥大学的MRC生物统计学部门‡牛津大学纳菲尔德医学系; NIHR牛津生物医学搜索中心; NIHR医疗保健相关感染和抗菌耐药性研究部门,牛津大学。 * * *数学科学学院,诺丁汉大学††MRC生物统计学部门,剑桥大学;英国卫生安全局†英国卫生安全局;剑桥大学的MRC生物统计学部门‡牛津大学纳菲尔德医学系; NIHR牛津生物医学搜索中心; NIHR医疗保健相关感染和抗菌耐药性研究部门,牛津大学。* * *数学科学学院,诺丁汉大学††MRC生物统计学部门,剑桥大学;英国卫生安全局§牛津大学原科健康科学系;国家健康研究所健康保护研究所(NIHR HPRU)在牛津大学数学系曼彻斯特大学卫生保健相关感染和抗菌素抵抗方面的抗菌抗药性”。
Aurore Loquet,RémiLeGuern,Teddy Grandjean,Claire Duboyez,Marvin Baudin等。基于高促销定量PCR的孕妇,用于孕妇的Bacertill阴道病诊断的克拉斯菌和回归树。分子诊断杂志,2021,23(2),pp.234-241。10.1016/j.jmoldx.2020.11.004。hal-03311394
该试剂盒提供了引物/探针混合物,用于使用 qPCR 检测外源核酸模板(cDNA 合成后的 DNA 或 RNA 模板)。引物存在于 PCR 限制浓度,允许与目标序列引物进行多路复用。即使目标基因的拷贝数较低,对照模板的扩增也不会干扰目标基因的检测。有多种染料可供选择,允许使用不同的通道检测控制模板。必须选择与检测目标基因不同的荧光染料。
液滴数字PCR(DDPCR)已成为分子诊断中的一种变革性技术,在核酸定量中具有无与伦比的灵敏度和精度。通过将样品划分为数千滴,DDPCR可以实现数字方法进行DNA和RNA分析,克服传统PCR方法的局限性。这种微型审查强调了DDPCR在肿瘤学中的关键进步和应用,包括其在检测循环肿瘤DNA(CTDNA),拷贝数变化(CNV)和表观遗传生物标志物方面的效用。该技术鉴定罕见的遗传事件和Moni Tor肿瘤异质性的能力对癌症的诊断,治疗和监测产生了重大影响。此外,DDPCR在非侵入性液体活检中的作用及其在新兴领域的应用,例如CAR-T治疗监测和肿瘤微生物组分析,证明了其广泛的临床潜力。尽管诸如标准化和成本等挑战,但多重和自动化方面的持续进步有望扩大DDPCR的范围,从而进一步增强了其对个性化医学和分子肿瘤学的贡献。
细菌感染可能发生在各种身体组织中,包括呼吸道,尿路,胃肠道和血流。这项研究旨在使用表型和基因型方法鉴定三种重要的致病物种 - 大肠杆菌,克雷伯氏菌和铜绿假单胞菌。细菌分离株最初通过标准诊断测试鉴定,并通过多重PCR确认。将与每种病原体相对应的三个随机选择的分离株进行基因测序,并与NCBI的参考菌株进行比较。此外,从乳杆菌属的氧化锌(ZnO)纳米颗粒的抗生物胶片活性。提取物。使用FTIR,XRD,FE-SEM和AFM对合成的ZnO纳米颗粒进行表征。XRD分析显示出不同的峰值指示晶相,而AFM和FE-SEM显示球形纳米颗粒,平均直径为58.30 nm。该研究还评估了ZnO纳米颗粒抑制生物膜形成的能力。结果表明,样本类型(烧伤,伤口和尿液)与感染病原体之间没有统计学意义的关联(P = 0.37)。多重PCR扩增在28个分离株中成功成功,共同感染如下:57.15%的分离株显示三重感染(所有三种病原体),而在57.14%(E. coli and P. aeruginosa)中观察到双重感染,e.luginosa和46.42%(E. coli and K. pneos and aerug anderos and Aerimonia和46.42%)和46.46%(和46.42%)和46%。分离株的肺炎。用ZnO纳米颗粒处理后观察到生物膜形成的显着降低(P≤0.001)。在50.01%(大肠杆菌),28.58%(铜绿假单胞菌)和17.86%(K。肺炎)中检测到单一感染。测序分析显示,大肠杆菌,铜绿假单胞菌和K.肺炎的参考基因的相似性分别为99%和98%。总而言之,基因型和表型方法对病原体鉴定有效,ZnO纳米颗粒在抑制生物膜形成方面具有显着潜力,为对抗细菌感染提供了有希望的方法。
简介:微生物在牙髓疾病的发病机制中起着重要作用。在提高牙髓样本中微生物检测、鉴定和计数的灵敏度方面取得了重大进展。本研究的目的是比较培养和全基因组扩增(WGA)随后进行 PCR 检测在根管化学机械制备(CMP)之前和之后的细菌检测中的效果。方法:分析了 10 颗患有原发性牙髓感染的单根牙。在 CMP 之前和之后用纸尖收集微生物样本,将其分成两组:(i)将培养测定样本接种到含有 5% 脱纤维羊血、甲萘醌和血红素的布鲁氏菌琼脂上,并在 36°C 下厌氧孵育 14 天; (ii) 从分子测定样本中提取 DNA,并用 Phi29 DNA 聚合酶通过等温链置换进行 WGA,然后进行 PCR 以确定细菌的存在。结果:在两种测定中,CMP 之前的样本都显示所有 10 颗牙齿中都存在细菌。然而,在 CMP 之后,在进行的测定中细菌检测有所不同(p = 0.0198)。通过 WGA 随后的 PCR 在 70%(10 个中的 7 个)的样本中检测到细菌的存在,而只有 10%(10 个中的 1 个)在培养方法中显示细菌生长。结论:在使用 NaOCl 作为 CMP 冲洗剂进行根管治疗后,WGA 随后的 PCR 相结合增加了从根管样本中检测到的微生物。因此,这种技术组合可以成为一种重要的工具,以提高根管研究中的微生物检测率。
定量聚合酶链反应(QPCR)提供了一种快速,自动化和强大的现场方法,用于量化肺炎乳杆菌在构建饮用水系统中,补充并有可能替代传统的基于文化的技术。然而,由于发现与可行,传染性细菌无关的基因组副本,它在评估人类健康风险中的应用使人们越来越多。本研究通过QPCR和基于培养的方法研究了肺炎乳杆菌测量的关系,旨在建立QPCR与培养的浓度比率,以告知相关的健康风险。合格的研究使用成对水样品中的分子和基于培养的方法收集了有关肺炎乳杆菌浓度的定量数据。我们开发了一个泊松对数正态比率模型和一个随机效应荟萃分析模型,以分析跨站点内部和跨站点的QPCR培养比的变化。在系统评价中的17项研究中,有7项,包括23个特定地点数据集,用于荟萃分析。我们的发现表明这些比率通常从1:1到100:1不等,在所有地点的比率接近1:1。因此,采用默认的1:1转换因子似乎是必要的,作为一种谨慎的方法,将QPCR浓度转换为可培养的浓度,以用于健康风险模型,例如量化微生物风险评估(QMRA)。如果这种方法可能过于保守,则可活力-QPCR可以提高基于QPCR的QMRA的准确性。标准化QPCR和基于培养的方法以及影响肺炎乳杆菌可培养性的特定地点环境因素将改善对两种方法之间关系的理解。此处介绍的比率模型超出了简单的相关性分析,从而促进了关系中时间和空间异质性的研究。该分析是QMRA和分子生物学整合的一步,针对肺炎乳杆菌的框架适用于在环境中监测的其他病原体。
定量聚合酶链反应(QPCR)提供了一种快速,自动化和强大的现场方法,用于量化肺炎乳杆菌在构建饮用水系统中,补充并有可能替代传统的基于文化的技术。然而,由于发现与可行,传染性细菌无关的基因组副本,它在评估人类健康风险中的应用使人们越来越多。本研究通过QPCR和基于培养的方法研究了肺炎乳杆菌测量的关系,旨在建立QPCR与培养的浓度比率,以告知相关的健康风险。合格的研究使用成对水样品中的分子和基于培养的方法收集了有关肺炎乳杆菌浓度的定量数据。我们开发了一个泊松对数正态比率模型和一个随机效应荟萃分析模型,以分析跨站点内部和跨站点的QPCR培养比的变化。在系统评价中的17项研究中,有7项,包括23个特定地点数据集,用于荟萃分析。我们的发现表明这些比率通常从1:1到100:1不等,在所有地点的比率接近1:1。因此,采用默认的1:1转换因子似乎是必要的,作为一种谨慎的方法,将QPCR浓度转换为可培养的浓度,以用于健康风险模型,例如量化微生物风险评估(QMRA)。如果这种方法可能过于保守,则可活力-QPCR可以提高基于QPCR的QMRA的准确性。标准化QPCR和基于培养的方法以及影响肺炎乳杆菌可培养性的特定地点环境因素将改善对两种方法之间关系的理解。此处介绍的比率模型超出了简单的相关性分析,从而促进了关系中时间和空间异质性的研究。该分析是QMRA和分子生物学整合的一步,针对肺炎乳杆菌的框架适用于在环境中监测的其他病原体。