分别列出了图1和图2,分别显示了具有ACHE酶的化合物3a的2D和3D结合模型(PDB ID:4EY7)。当检查相关模型时,可以看到化合物3a与Tyr337,His447和H键与Tyr124具有Pi-Pi相互作用。图3和图4分别显示了具有ACHE酶的化合物3b的2D和3D结合模型(PDB ID:4EY7)。化合物3B在查看相关模型时具有带有ASP74的盐桥和与TRP286的盐桥。由于这些观察结果,似乎两种化合物都与ACHE的催化活性位点相互作用。虽然通过化合物3a中的苯基环提供了这种相互作用,但通过化合物3b中的哌嗪环提供了这种相互作用。此外,像多奈旋齐尔一样,化合物3b的苯基环与疼痛的外围阴离子区域相互作用。
图1。IntenzydB的体系结构,动力学数据统计和性能基准。(a)数据库体系结构基于五个表,包括三个用于酶结构信息的表(链级,氨基酸级和原子级),一个用于酶动力学的表,以及一个包括结构和动力学表中的外键的参考表。使用PDB ID,链ID和UniprotkB键建立表的映射。(b)六个酶委员会课程的动力学数据的分布。(c)IntenzyDB与手动策展方法之间的操作时间的比较。下载,阅读和清洁数据的操作时间用于处理1、100、200、400、600、800和1000 PDB ID,分别由点上下载和读取/清洁。红色实线显示了手动策划方法的总操作时间。所有操作时间均以几秒钟的速度报告。
探索DNA结构和DNA蛋白结合,该实验室将于10月7日星期一在Wilcox 073举行。Wilcox有15个工作站。所有学生都应登录:用户名 - Cheme355密码 - Giagyu教程通过有关基本对相互作用和DNA-蛋白质绑定的简单任务介绍了分子建模软件VMD。第一部分是VMD教程,第二部分是实际分配。作业中有五个问题。第1部分:VMD教程本实验室应允许您熟悉蛋白质数据库,可视化结构并在视觉上和数学上首先对其进行比较。1。转到http://www.rcsb.org 2。对“ Myoglobin”进行搜索(关键字)3。下载Horse Hemoglobin(PDB标识符1Azi)的PDB文件,没有压缩4。通过单击桌面5上的图标来启动VMD。VMD打开图形窗口和命令提示符窗口。这是两者中出现的:
访问蛋白质数据库(PDB)并下载结构文件并使用分子建模程序显示它们已成为生物化学家必不可少的技能。研究蛋白质的研究人员通常需要检查蛋白质的三维结构,以计划实验和解释数据。其他实验可能依赖有关蛋白质结构结构的信息以及保守序列基序的存在。制药公司使用蛋白质3-D结构来帮助设计将与蛋白质相结合的药物。获得生物化学学位的学生应该具有某种使用PDB并在计算机上可视化和操纵3-D分子结构的能力。此外,交互式分子图形对于帮助学生了解蛋白质和核酸的结构可能具有很高的价值。教科书中的静态数字如果设计良好,但仅是一定程度。观看动画比文本图形更具洞察力,但不如学生控制分子显示方式的互动练习。
类型 国际 国家 在 UGC-CARE 列出的期刊上发表的论文 145 --- 在同行评审期刊上发表的论文(上面未提及) - -- 出版的书籍 1 -- 编辑的书籍 -- -- 对书籍章节的贡献 3 会议 / 研讨会论文集的编辑 - 在会议 / 研讨会论文集上发表的论文 2 -- 在会议 / 研讨会上发表的论文 74 68 存放在 CCDC、PDB 等中 -
摘要:COVID-19 已成为全球几乎所有国家医疗保健系统的全球风险,该病毒起源于中国武汉。迄今为止,尚无可用于治疗该疾病的特定药物。SARS-CoV-2 的确切来源尚不清楚,尽管早期病例与华南华南海鲜市场有关。本文报告了最近 FDA 批准的抗癌药物(Capmatinib、Pemigatinib、Selpercatinib 和 Tucatinib)的计算机分子建模,以了解它们对 COVID-19 靶标的抑制作用。将选定的抗癌药物对接在 SARS-CoV-2 主蛋白酶(PDB ID:6LU7)和 SARS-CoV-2 刺突糖蛋白(PDB ID:6M0J)上,以确定这些药物的结合能力。评估了药物的 ADMET 参数,此外,还进行了 DFT 计算以研究药代动力学、热参数、偶极矩和化学反应性描述符。讨论了对接能 (ΔG) 和相互作用的氨基酸残基。已经得出了有希望的分子对接结论,证明了所选抗癌药物具有开发用于对抗 COVID-19 的合理药物的潜力。对该药物的进一步优化可能会支持缓解疫情所急需的快速反应。
关键词:光子剥离、临时键合和解键合、薄晶圆处理、键合粘合剂 摘要 临时键合和解键合 (TB/DB) 工艺已成为晶圆级封装技术中很有前途的解决方案。这些工艺为晶圆减薄和随后的背面处理提供了途径,这对于使用 3D 硅通孔和扇出晶圆级封装等技术实现异质集成至关重要。这些对于整体设备小型化和提高性能至关重要。在本文中,介绍了一种新颖的光子解键合 (PDB) 方法和相应的键合材料。PDB 通过克服与传统解键合方法相关的许多缺点来增强 TB/DB 工艺。PDB 使用来自闪光灯的脉冲宽带光 (200 nm – 1100 nm) 来解键合临时键合的晶圆对与玻璃作为载体晶圆。这些闪光灯在短时间间隔(~300 µs)内产生高强度光脉冲(高达 45 kW/cm 2 ),以促进脱粘。引言近年来,三维 (3D) 芯片技术在微电子行业中越来越重要,因为它们具有电路路径更短、性能更快、功耗和散热更低等优势 [1]。这些技术涉及异质堆叠多个减薄硅 (Si) 芯片(<100 µm)并垂直互连以形成三维集成电路 (3D-IC) [2]。在现代 3D 芯片技术中,可以使用硅通孔 (TSV) 来代替传统的引线键合技术在硅晶圆之间垂直互连。减薄晶圆使得这些 TSV 的创建更加容易 [3, 4]。为了便于处理薄硅晶圆,需要对硅晶圆进行临时键合。在临时键合工艺中,次级载体晶圆充当主器件晶圆的刚性支撑,并利用两者之间的粘合层将两个晶圆粘合在一起。晶圆粘合在一起后,即可进行背面研磨和后续背面处理。背面处理后,减薄后的晶圆和载体堆叠
图 5. Quizartinib 和 4ACP 在 FLT3 ATP 结合位点的结合模式。(A)、(C) Quizartinb 和 4ACP 分别在 FLT3 酶的 ATP 结合位点的 3D 结合相互作用(PDB 代码:4XUF,DFG-out 构象)。Quizartinib 和 4ACP 表示为具有白色骨架的棒,相互作用的氨基酸表示为具有绿色骨架的棒,DFG 基序显示为黄色棒,氢键
Abstract In the year 1971, the world's biggest structural biology collaboration name — The Research Collaboratory for Structural Bioinformatics (RCSB), was formed to gather all the structural biologists at a single platform and then extended out to be the world's most extensive structural data repository named RCSB-Protein Data Bank (PDB) (https://www.rcsb.org/) that has provided the服务已有50多年的历史,并继续为结构数据的发现和存储库提供遗产。RCSB已从合作网络发展为一个成熟的数据库和工具,其中包括大量蛋白质结构,含核酸酸的结构,模型结构和AlphaFold结构,最好的是,它每天都在随着工具和视觉体验的计算进步而扩展。在这篇评论文章中,我们讨论了RCSB如何成为一个成功的协作网络,其在每十年的扩展以及它如何帮助开创性的研究。还讨论了正在帮助研究人员,每年的数据沉积,验证,处理和建议的PDB工具,这些工具还可以帮助开发人员在未来几年的改善。本评论将帮助未来的研究人员了解RCSB及其在每十年的完整历史,以及如何在各个科学领域开发各种未来的协作网络,并通过将RCSB作为案例研究来成功。