摘要这项研究的重点是回顾微分方程在分析气候变化对工程项目的影响时的有用性。这样做,该研究采用了数学模型,这些模型强调了气候变化的影响,这些影响与持续和可靠的基础设施的配置最相关,包括温度波动,海平面上升和降水的变化。与时间的多个微分方程一起描述了这样的东西:温度动力学的热方程,与流体动力学相关的海平面上升的Navier-Stokes方程。此处的发现揭示了以下内容:将温度升高2°C将混凝土结构的耐用性降低了其当前有用寿命的约15%,指的是海平面上升的升高。5米可以将维修沿海基础设施维修所需的成本提高25%。此外,土壤稳定性的差异模型表明,雨水增加10%可能会导致平均增长汇度滑坡的可能性增长12%。因此,这些研究强调了将气候预测纳入工程框架以设计结构鲁棒性的必要性。包括实时数据,该研究表示增强气候影响预测建模对工程成果的整体有效性的可能性。关键字:全球变暖,普通的部分微分方程,结构,基础设施,海啸,浅层基础,土壤流动性。1。这项研究的重点是确定引言工程项目目前面临着与气候波动及其对环境的影响有关的独特问题。基础设施和工程设计,以承受气候变化的影响,例如温度升高,水位上升和增加毁灭性自然灾害的病例[1]。为了解决此类影响,最好的数学建模技能正在应用于这些问题。,微分方程在量化了描述气候变化及其对工程系统的影响的动态现象方面占据了核心位置。对于在工程科学等各个学科中遇到的大量应用程序中,采用一种或多种基本类型的微分方程来表征连续过程或现象。当它用于气候变化时,它们被用来了解逐渐变化和灾难如何影响物理结构,以使工程师能够预测未来的风险。例如,部分微分方程(PDE)对于模拟水文流的模拟至关重要,这些水文流有助于建立能够承受洪水的结构[2]。同样,由于高温而导致建筑物和桥梁等结构中的温度效应。
摘要在这项研究中,我们研究了使用非相似性分析考虑了磁流失动力学生物感染微极纳米流体的能力,考虑了soret和dufour效应的影响。我们的目标是预测在生物和工业系统中观察到的复杂热量和传质现象。近年来,能源应用的显着进步刺激了我们的询问和探索。为增强热导率并探索潜在的生物相容性,我们将血液用作碱流体,含有银(Ag)和氧化铜(CUO)。这种独特的配置提供了对热性能的改进控制,并支持探索各个领域的高级应用程序。在我们的分析中,我们还考虑了诸如粘性耗散,soret和dufour效应的影响,磁场的存在以及热产生的因素。通过使用合适的非相似转换,管理PDE及其相应的边界条件将转化为无量纲形式。修改模型产生的结果是通过应用局部非相似方法的应用,扩展到截断的第二度,并与有限差分代码(BVP4C)集成在一起。此外,在分析的流动场景中,不同因素对流体流动,微旋转,热传递,体积分数和微生物特性的影响通过视觉表述(在达到令人满意的结果与先前研究中报道的结果之间达成令人满意的一致性)之后,通过视觉表述进行了检查和检查。表旨在为阻力系数和Nusselt编号提供数值变化。尽管有一定的局限性,仍对先前发表的工作进行了比较分析,以评估数值方案的准确性。可以证明,材料参数k对微极流体动力学有两种影响:它增加了微旋转曲线,从而导致较高的流体刚度,并降低了响应角度磁场的速度曲线。此外,在生物相关的微极流体中,较大的K值与温度谱升高相关,显示出通过提高的流体速度和动能生产来提高传热效率。生物对流微极流体中的速度曲线随较高的磁场值(M)而上升,突出了磁场方向的重要性,以彻底理解这些系统中流体的行为。增加Dufour效应(DU)会提高温度曲线,而增加soret效应(SR)降低了浓度曲线。此外,增加生物对流的路易斯数(LE)会导致移动的微生物浓度较高,但增加了PECLET数量(PE)会导致微生物浓度下降。我们研究的主要重点是设计独特的转型,以解决投资下的特定问题的复杂性。这些转变旨在产生精确有效的结果,为纳米流体流的领域提供宝贵的见解,尤其是关于压溃疡问题的研究。