摘要:近年来,碳纳米管(CNT)已作为材料出现,这些材料经常用于制备具有导电或高级介电特性的聚合物纳米复合材料,因为它们的独特特性(包括高温和电导率),包括高度和稳健的材料,具有很高的长度至直径比例。但是,在使用这些材料的聚合物纳米复合材料制备过程中,遇到了一些问题。主要问题之一是,在准备这些导电材料或将它们添加到聚合物中后,由于它们的导电结构,它们倾向于聚集,形成团聚。因此,在这项研究中,首先,多壁碳纳米管(MWCNT)用多苯胺(PANI)的导电形式(随后,聚(Dimethyl Siloxane)(PDMS)聚合物聚合物纳米复合膜功能化,具有不同浓度的多型多壁碳Nanotubes的浓度。然后,表征了膜的结构,形态,电和介电特性。仅添加了1.5%的PANI-CNT,在1 Hz时,PDMS的介电常数增加了47倍。此处介绍的介电膜可用于电容器,柔性电子,介电弹性体和人造肌肉应用。关键字:碳纳米管(CNTS),导电聚合物,介电,聚苯胺(PANI),聚合物纳米复合材料,聚(二甲基Siloxane)(PDMS)
图1:散射强度,𝐼(𝑄),作为动量转移的函数,对于在d-toluene中研究的PDMS-G-PDMS瓶洗样品。a)低浓度,φ= 0.5 vol%,pdms-g-pdms瓶刷有𝑀𝑀
光学波导可用于从外部光源到人体内部的光线,用于诸如光动力疗法或光学网络等疗法。[1]在高级波导中,可以将光输送与生物传感函数结合,其中光学/电气单位通过相同的波导在相反的方向上运输并用于诊断。在大多数情况下,此类波导是在批处理过程中制造的,具有顺序层沉积和预先固化/蚀刻步骤,该步骤适用于基于硅的微电子。[2]从制造的角度来看,需要采用连续的,更高的生产方法,以在单个生产过程中迈向额外功能的整合。令人印象深刻的进展,他们生产了多功能光纤[3],这些光纤融合了光学波导,微流体元素和电极通过热塑料的热绘制。[4]从患者的舒适性角度来看,生物医学波导还需要从二氧化硅和热塑性塑料转移到更合规的材料,以通过匹配目标组织的刚度来提高体内生物相容性。[1,5]要应用于肌肉或心脏等组织中的光遗传激活,光纤需要具有弹性特征并可扩展。有机硅弹性体(例如聚二甲基硅氧烷(PDMS))是有趣的候选者,在低MPA范围内提供刚度值[6],并将其作为生物兼容型植入物材料提供了证实的记录。[4C][7] PDM的光学特性非常适合波引导:PDMS具有较低的光学损耗系数,从UV到NIR波长(在850 nm时≤0.05dB cm –1)[8]和相对较高的折射率(RI≥1.40)。[8,9]此外,PDMS显示出较高的可扩展性(> 100%)和拉伸强度(> 1 MPa),[10]为体内高运动场景提供合规性和可伸缩性。[4C,11]使用可伸缩的光学设备在高应变下进行光输送和检索的重要性,用于假体中的一系列生物医学scenarios,例如假体中的应变感应[12],以及对外周神经的光学刺激[11b]和脊髓。
PDMS是微流细胞制造的理想基础材料,可提供生物兼容性,光学透明度和对气体的渗透性。[4]例如,透明度是遵循带有光学设置的微流量流中的co-Flow或微滴生成过程的至关重要的要求。然而,使用PDMS的流动池制造涉及几个容易出现错误的过程步骤,尤其是用户,并且很难制作Complex 3D结构,需要多层制造,以预先构成深入的制造经验。因此,研究人员已经开始专注于通过3D打印来制造微流体流动池,因为其单程特征,短程序时间和易于分发的数字设计。[5–7]对微流体流细胞的3D打印的兴趣已迅速增长,这是由于该领域的公共公共事件迅速增加。[8-12]近年来,投资高分辨率的3D打印技术已付出了很多努力,以缩小可实现的最小功能大小和基于PDMS和3D打印的微流体设备之间的功能的差距。作为一种有希望的3D打印技术,投影微刻光(PμSL)引起了极大的兴趣。已经据报道,已建立的微流体模块,例如液滴发生器,[13]阀,[14]和泵[6]通过PμSL制造。更精确地量身定制了3D打印微流体的功能,已经开发了光聚合物制剂以提高透明度[15]和PμSL打印的细胞培养环境或生物传感器的长期生物相容性。[16]
许多最近开发的无线皮肤界面生物电子设备都依赖于传统的热固性有机硅弹性体材料,例如聚二甲基硅氧烷 (PDMS),作为电子元件、射频天线和常见的可充电电池的软封装结构。在优化的布局和设备设计中,这些材料具有吸引人的特性,最突出的是它们即使在曲率高和自然变形较大的区域也能与皮肤形成温和、无创的界面。然而,过去的研究忽视了开发这些材料变体以进行多模式操作的机会,以增强设备对从机械损坏到热失控等故障模式的安全性。这项研究提出了一种自修复 PDMS 动态共价基质,其中嵌入了化学物质,可提供热致变色、机械致变色、应变自适应硬化和隔热,作为与安全相关的属性集合。该材料系统和相关封装策略的演示涉及一种无线皮肤界面设备,该设备可捕获健康状况的机械声学特征。这里介绍的概念可以立即应用于许多其他相关的生物电子设备。
粘附需要分子接触,并且天然粘合剂采用机械梯度来实现完整(共形)接触以最大程度地提高粘附力。直觉上,人们期望顶层的模量越高,粘附强度越低。然而,僵硬顶层的厚度与粘附之间的关系尚不清楚。在这项工作中,我们量化了在软聚聚二甲基硅氧烷(PDMS)弹性体的厚度变化厚度的刚性玻璃状聚(PMMA)层之间的粘附。我们发现,在加载循环中,仅需要≈90nm厚的PMMA层才能将宏观粘附降低至几乎为零。可以使用Persson和Tosatti开发的保形模型来解释双层的粘附下降,在该模型中,创建保形接触的弹性能量取决于双层的厚度和机械性能。更好地理解机械梯度对粘附的影响将对粘合剂,摩擦以及胶体和颗粒物理学产生影响。
尽管水蒸气吸附于固体自由表面会引起接触角的变化,但对水蒸气影响的研究却很少。1942年Boyd和Livingston[2]以及2007年Ward和Wu[3]指出,水蒸气在自由固体表面的吸附应该会改变接触角,因为γSV会降低。1988年,Yekta-Fard和Ponter[4]测量了当水滴在聚四氟乙烯表面上暴露于环己烷、癸烷或十一烷蒸气时,水的接触角没有变化。几位作者[5]研究了由于吸附有机蒸气引起的水的表面张力的变化。在许多自然现象和工业应用中,水滴在表面的滑动都很重要,例如涂层[6]、能量转换[7]和水收集[8],或者雨中的玻璃或挡风玻璃。在这些情况下,需要区分前进接触角θ a 和后退接触角θ r 。两者之间的差异称为接触角滞后。它可能是由表面异质性、粗糙度或适应性引起的。[9] 接触角滞后很重要,因为它决定了固着液滴的摩擦力:F=kγLVw(cosθr−cosθa)。[2,10] 其中,k≈1 是形状因子,w 是液滴与固体表面接触面积的宽度。尽管取得了令人瞩目的发展,但液滴在表面上的移动机制还远未被理解或控制。在这方面,涂有聚二甲基硅氧烷(PDMS)刷的表面由于其低接触角滞后性而引起了极大兴趣。 [11] 在最近的一篇论文中,我们证明了当系统暴露于甲苯蒸汽时,PDMS 涂层表面上水滴的接触角滞后会进一步减小。[12] 我们通过蒸汽被吸附在 PDMS 层中的润滑作用解释了这种影响。原子力显微镜检测到甲苯蒸汽层厚度增加,支持了这一假设。聚合物刷吸附溶剂蒸汽确实是已知的。[13]
邀请申请以固定的津贴/奖学金/薪金金额为卢比,邀请高级项目助理(I Post-I Post-I)。30600.00 p.mm在一个ICMR赞助的项目中,标题为“开发纳米结构的氧化石墨烯/聚多巴胺涂层的PDMS纳米生物传感器监测GPC1,以早期诊断胰腺癌的早期诊断”。该职位纯粹是临时的,并且与该项目共同终止。候选人应在MTECH/ M.SC./ M.Pharm中拥有IST分裂。生物技术/生命科学/药房或相关领域。具有净/门资格的候选人,并且在细胞培养和动物处理方面经历了经验。年龄上限为28岁(根据GOI规则可以放松);所有事物都是平等的,根据GOI规则,SC/ST候选人将是优选的。基本资格:MTECH/ M.SC./ M.PHARM的IST部门。生物技术 /生命科学 /药房或相关领域。理想的资格(如果有):净/门资格的候选人,熟悉生物传感器技术以及细胞培养和动物处理方面的经验。在普通纸上应用名称,永久和信函地址,父亲和母亲的姓名,电话号码。和电子邮件地址,教育事业的详细信息(从高中或等效开始)以及所有标记表和证书的自我调查副本以及任何研究或其他经验等的详细信息,如果有的话,应在21天内到达27march2025,在27march2025中,P.I.如果被要求进行面试,将不支付ta/da。备注:PI应该在研究所网页上宣传该职位。广告详细信息:项目编号。R&D/SA/ICMR/BCE/24-25/656项目标题开发纳米结构的氧化石墨烯/涂层PDMS的PDMS纳米生物传感器监测GPC1,以早期诊断为胰腺癌。(IIRPSG-2024-01-04876)PI。AbhaMishra Post Post高级项目助理(I)奖学金/工资卢比。30600.00 p.mm资助代理ICMR
12.00 - 12.30 Lidia Escutia Guadarrama、Maria del Pilar Cañizares Macias。 “对聚二甲基硅氧烷(PDMS)进行表面化学改性以开发用于分析应用的微流体装置”。 12.30 - 12.45 Emilio Guardado-Ruiz、Alberto Elizalde-Mata、M.E. Trejo-Caballero、Miriam Estevez。 “来自马尾藻属的纳米纤维素泡沫:使用深共晶溶剂进行可持续分离”。
清洁,导电棉布和MCF应变传感器的SEM图像如图3。图3a显示了不同宏伟的干净棉织物的形态。可以看出,织物由编织的棉纤维束组成,纤维的表面相对光滑。图3(C-E)在将织物浸入MXENE悬浮液和干燥后,从不同角度显示了导电MCF的SEM成像。在弹性的2D MXENE纳米片装饰纤维表面并在棉纤维上观察到组装的Mxene纳米片后,光滑的棉纤维表面变得粗糙。因此,获得了带有核心壳结构的Mxene装饰的棉纤维。图3G是MXENE包装纤维和相应元素映射的SEM图像。据观察,Ti,C和O均匀地分布在棉纤维表面上,表明纤维被一层Mxene纳米片紧密包裹。图3F显示,导电棉纤维被PDMS层很好地封装,这些PDMS层对内导电棉纤维起着保护性和限制性作用,并且在封装过程后保持了织物结构。