DNR 认识到,为了实现为华盛顿人服务的使命和愿景,该机构必须在其工作的各个方面都秉持多元化、支持公平、反对种族主义、包容和归属感的价值观。华盛顿州是多元化的,该机构应该反映这种多元化。在 DNR,多元化、包容和公平的工作场所是所有员工和志愿者,无论其性别、种族、民族、国籍、年龄、性取向或身份、教育或能力如何,都能感到被重视和尊重的地方。当 DNR 代表该机构服务的人群时,DNR 可以通过有目的、有意识和公平地使用资源和计划,更好地解决边缘化和代表性不足的社区的结果。这一承诺将通过确保机构行动和决策公平公正来提高 DNR 计划和服务的有效性。
无论对飞机进行何种类型的维护,都应使用说明为完成维护活动的航空技术人员提供指导,并概述要执行和完成的维护项目。但是,使用说明并不能保证正确和正确地完成维护活动,因为说明可能有误,并且/或者维护人员可能会误解、曲解或不正确地遵循概述的程序。由此产生的维护错误可能会导致飞机事故,正如中西部航空 5481 航班所表明的那样。为了了解与书面维护说明相关的人为因素如何导致飞机事故,研究人员使用人员 (P)、环境 (E)、行动 (A)、资源 (R) - PEAR - 框架,定性分析了 2003 年 1 月 1 日至 2017 年 12 月 31 日期间在美国第 121 部分或第 135 部分运营下发生的 12 起飞机事故,这些事故的促成因素或因果因素是维护说明相关错误。详细的事故信息(包括事故原因)取自美国国家运输安全委员会 (NTSB) 提供的飞机事故报告。研究结果表明,维护活动(特别是维护说明的充分性和正确使用)在很大程度上受到人为因素的影响,例如整体 o
创建代理商负责人和梨团队的视频,分享有关该机构梨声明的信息。注意:应该为视频提供美国手语(ASL)Interpreɵng,capɵoning和成绩单。代理商应将视频发布在其代理机构的着陆页上,并与员工和外部合作伙伴内部分享。我们建议将成绩单转换为您代理机构服务的前6个语言populaɵ至少。如果数据不可用,则将转录本转化为使用最佳数据的最低限度六个语言:西班牙语,越南,俄罗斯,乌克兰,塔加洛和索马里。(如果需要)提供其他语言的翻译。建立一个独立的机构管理政策,概述了该机构的角色和责任,该命令是执行命令22-04。
梨(pyrus spp。)是属于家庭酒渣鼻的最重要的可食用水果之一。DNA标记,分子遗传学和基因组学以及梨的分子繁殖取得了巨大进展。可靠的DNA标记物的发展,例如简单的序列重复和单核苷酸多态性,已允许梨饰的DNA分析,评估梨物种内的遗传多样性以及梨种类之间的系统发育关系的分析。参考遗传链接图和全基因组分子标记物已使实用的标记辅助选择可以抵抗黑点和/或梨sc疮疾病,自我兼容,收获时间和日本梨育种计划中的果皮。分子育种已显示出实用育种的选择效率的三倍以上。此外,采用两种基于基因组学的新方法(基因组范围的关联研究和基因组选择)的育种计划正在进行水果质量和质地,以及用于育种的定量特征。的共线性和功能同步,并已被用来有效预测相关物种中感兴趣基因的功能并开发选择标记。
刺梨(PP)或Opuntia ficus-Indica(Ofi),其科学名称来自Oponte的拉丁语Opuntius;希腊城市的名称[2]。通用名称是仙人掌,它来自希腊语“ kaktos”,意思是:棘手的植物[3]。根据Schweizer(1997)的说法,该植物的名称可能不同,具体取决于当地的成语:Nopal,Tuna,African Thistle,Prickly Pear,El-Tin-El-Choki等[2]。Opuntia原产于墨西哥,此外,刺梨的果实出现在墨西哥国旗的标志上[4]。它主要生长在干旱和半干旱地区和极端条件下。其地理分布主要位于墨西哥,西西里岛,智利,巴西,土耳其,韩国,阿根廷和北非[5]。粮食和农业组织强调,低水的紧急性和高水利用效率比有利于仙人掌生产的扩展[6]。
摘要 Prime editing 是一种最近开发的基于 CRISPR/Cas9 的基因工程工具,可用于在基因组中引入短插入、删除和替换。然而,Prime edit 的编辑率通常约为 10%–30%,效率却与其多功能性不符。本文,我们介绍了 Prime editor 活性报告基因 (PEAR),这是一种灵敏的荧光工具,可用于识别具有 Prime edit 活性的单个细胞。PEAR 没有背景荧光,可特异性指示 Prime edit 事件。它的设计为整个间隔序列的序列变异提供了无限的灵活性,使其特别适合于系统地研究影响 Prime edit 活性的序列特征。使用 PEAR 作为 Prime edit 的富集标记可使编辑群体增加高达 84%,从而显著提高 Prime edit 在基础研究和生物技术应用中的适用性。
(a) Prime Editor 活性报告基因 (PEAR) 的示意图。PEAR 的机制基于与 BEAR 相同的概念,并且包含相同的非活性剪接位点,如图 (a) 所示。PE 可以将“G-AC - AAGT”序列恢复为规范的“G-GT-AAGT”剪接位点。与 BEAR 不同的是,这里的 Prime 编辑发生在 DNA 的反义链上,因此,这种方法使我们能够将间隔序列定位在内含子内。这里,整个间隔的长度是可以自由调整的(显示为“N”-s)。剪接位点的改变的碱基显示为红色,编辑的碱基显示为蓝色。PAM 序列为深绿色,nCas9 为蓝色,融合的逆转录酶为橙色。
梨是最广泛消耗的水果之一,它们的质量直接影响消费者的满意度。表面缺陷,例如黑点和小斑点,是梨质量的关键指标,但由于视觉特征的相似性,检测它们仍然具有挑战性。这项研究提出了Pearsurfacedects,这是一个自我结构的数据集,包含六个类别的13,915张图像,其中有66,189个边界框注释。这些图像是使用定制的图像采集平台捕获的。在数据集上建立了27种版本的27个最先进的Yolo对象探测器的Yolo对象检测器,Yolor,Yolov5,Yolov5,Yolov6,Yolov7,Yolov7,Yolov7和Yolov9。为了进一步确保评估的全面性,还包括了三个高级非Yolo对象检测模型,T-DETR,RT-DERTV2和D-FINE。通过实验,发现yolov4-p7的检测准确性在map@0.5达到73.20%,而Yolov5n和Yolov6n也显示出极大的潜力,可以进一步提高梨表面缺陷检测的准确性。本研究中用于模型基准的梨表面缺陷检测数据集和软件程序代码都是公开的,这不仅会促进对梨表面缺陷检测和分级的未来研究,而且还为其他水果大数据和类似研究提供了宝贵的资源和参考。
无论对飞机进行何种类型的维护,都应使用说明为完成维护活动的航空技术人员提供指导,并概述要执行和完成的维护项目。但是,使用说明并不能保证正确和正确地完成维护活动,因为说明可能有误,并且/或者维护人员可能会误解、曲解或不正确地遵循概述的程序。由此产生的维护错误可能会导致飞机事故,正如中西部航空 5481 航班所表明的那样。为了了解与书面维护说明相关的人为因素如何导致飞机事故,研究人员使用人员 (P)、环境 (E)、行动 (A)、资源 (R) - PEAR - 框架,定性分析了 2003 年 1 月 1 日至 2017 年 12 月 31 日期间在美国第 121 部分或第 135 部分运营下发生的 12 起飞机事故,这些事故的促成因素或因果因素是维护说明相关错误。详细的事故信息(包括事故原因)取自美国国家运输安全委员会 (NTSB) 提供的飞机事故报告。研究结果表明,维护活动(特别是维护说明的充分性和正确使用)在很大程度上受到人为因素的影响,例如整体 o
摘要 仙人掌属植物(Opuntia ficus-indica (L.) Mill.)是能够耐受恶劣环境条件的最知名农作物之一。南非是少数拥有大量仙人掌种质资源的国家之一,这些种质资源代表了移地保护种群。然而,人们对该种群的遗传多样性知之甚少。此外,一些基因型在形态上不明显,因此,对于新手农民和研究人员来说,识别种质资源中的样本是一项挑战。本研究旨在使用八个简单序列重复 (SSR) 标记来区分和测量代表南非仙人掌种质资源的 44 个栽培品种的遗传多样性。显然,这些品种具有中等水平的多样性(平均多态性信息含量 PIC = 0.37,Nei 无偏基因多样性 = 0.42),可区分 90% 的品种。使用算术平均数 (UPGMA) 的非加权配对法对品种进行分析,发现主要分为三个聚类,而主坐标分析 (PCoA) 则显示,根据品种在农业中的用途,其聚类不明显。