表1。au膜计量学。使用界面分布函数(IDF)方法与金沉积时间计算的金层厚度,平均表面晶粒直径和表面覆盖率的演变。使用IDF方法在模拟表面上估算了粒间距离,该表面由具有受控的表面覆盖范围和直径的纳米虫制成。
纳米级的光 - 物质相互作用的精确控制位于纳米光子学的核心。但是,由于相应的电磁近场通常限制在传统光学显微镜分辨率以下的体积之内,因此在此长度尺度上进行的实验检查是具有挑战性的。在半导体纳米型电磁场中进一步限制在各个亚波长谐振器的范围内,从而限制了这些结构中关键光 - 物质相互作用的访问。在这项工作中,我们证明了光电子发射显微镜(PEEM)可用于分辨近场光谱的极化以及受损坏对称性硅元素支撑的电磁共振的成像。我们发现,通过原位钾表面层启用的光发射结果与可见和近红外波长之间的全波模拟和远场反射测量一致。此外,我们发现了跨场阵列边缘附近的集体共振的偏振相关演变,利用了PEEM的远场激发和全场成像。在这里,我们推断出八个谐振器或更多之间的耦合建立了此元图的集体激发。总而言之,我们证明了高光谱的高光谱成像和PEEM的远场照明可以利用半导体纳米光子结构中的集体,非本地,光学共振的计量学。
具有可视化化学,结构和神经生物学至关重要的纳米级亚细胞结构。尤其是四氧化os已被广泛用于选择性脂质成像。尽管使用无处不在,但脂质膜中的oSmium物种形成以及电子显微镜(EM)中图像对比的机制始终是开放的问题,限制了改善染色方案并改善生物样品的高分辨率成像的努力。以我们最近的成功使用光发射电子显微镜(PEEM)来对小鼠脑组织进行15 nm的亚细胞分辨率图像,我们已经使用PEEM来确定脂质膜中OS染色的化学对比机制。os(iv)以OSO 2的形式产生脂质膜中的聚集体,导致了状态的电子结构和电子密度的强烈空间变化。OSO 2具有金属电子结构,可逐渐增加费米水平附近状态的电子密度。将金属OSO 2沉积在脂质膜上,可以强烈增强生物材料的EM信号。膜对比机械的这种不明显
摘要:在两个化学上相同但具有电子不同的过渡金属二进制(TMDS)之间的连接的超快载体动力学仍然很大程度上未知。在这里,我们采用时间分辨的光发射电子显微镜(TR-PEEM)来探测单层 - 型 - 次要人士(1L-ML)WSE 2连接的超快载体动力学。记录了连接的各个组件记录的tr-peem信号揭示了1L-和7L-WSE 2的子PS载体冷却动力学以及在1L-WSE 2上发生的几个PS激子 - 激子 - 激子 - 激子 - 激子。,我们观察到超高界面孔(H)在约0.2 PS时尺度上从1L--至7L-WSE 2转移。在7l-wse 2中,由于载体重组的重组在约100 ps的时间尺度上,其产生的过量H密度衰减。让人联想到耗尽区域的行为,TREEM图像揭示了H密度在7L-WSE 2界面上的积累,衰减长度约为0.60±0.17μm。这些电荷转移和重组动态与从头量量子动力学一致。计算的轨道密度揭示了电荷转移是从延伸到1L和ML区域的基底平面到位于ML区域上的上层平面。这种电荷转移模式与分层材料的化学均匀连接相关,并且构成了另一种载流子停电途径,应在对其ML旁边发现的1L-TMDS的研究中考虑,这是剥落样品中常见的情况。关键字:过渡金属二分法,外侧连接,界面电荷转移,时间分辨的光发射电子显微镜,超快光谱,非绝热的摘要分子动力学L
