大规模的数据源,遥感技术和出色的计算能力已极大地受益于环境健康研究。最近,引入了各种机器学习算法,以提供有关与每个哮喘患者症状和潜在环境风险因素有关的聚类数据异质性的机械见解。但是,关于这些机器学习工具的性能的信息有限。在这项研究中,我们比较了十种机器学习技术的性能。使用不平衡采样的高级方法(IS),我们改善了9种常规机器学习技术的表现,可预测暴露水平与室内空气质量的相关性与患者峰值呼气流量(PEFR)的变化之间的变化。然后,我们提出了一种深度学习的转移学习方法(TL),以进一步提高预测准确性。我们选择的最终预测技术(TL1_IS或TL2-IS)的TL1_IS的平衡精度中值(56〜76)%为66(56〜76)%,TL2_IS的68(63〜78)%。TL1_IS和TL2_IS的精确水平为68(62〜72)%和66%(62〜69)%,而敏感性水平为58(50〜67)%和59%(51〜80),来自25名患者的敏感性为1.08(精度,精度,精度),至1.28(敏感性),相比之下。我们的结果表明,使用不平衡采样的转移机学习技术是预测PEFR变化的强大工具,这是由于暴露于室内空气而变化的,包括2.5μm和二氧化碳的物质浓度。此建模技术甚至适用于小型或不平衡的数据集,该数据集代表一个个性化的现实世界设置。