外壳尺寸 (W×D×H) 210×315×90 mm 显示屏外壳材质 塑料 外壳材质 塑料 称重板材质 不锈钢 平台材质 不锈钢 称重表面尺寸 (W×D) 190×180 mm
印尼海藻的潜力是支持印度尼西亚蓝色经济议程的部门之一。海藻的用途非常多样化,并取决于海藻基地的生产加工。海藻是马里培养部门的主要商品之一。但是,增加可能会对环境产生负面影响。这是因为海藻加工会产生65-70%的浪费,并且处理废水处理厂(WWTP)仍然使用治疗化学物质,因此该方法尚未包含在环保和可持续的管理标准中。本研究使用一种描述性方法,具有深入的访谈,并得到了文献评论的支持,以加强实施等离子体细胞泡沫技术的研究验证。PFB实施分析旨在确定使用PFB管理海藻废品时产生的成本效益。结果发现,血浆精细泡沫技术可以将废物管理成本降低50%。希望使用PFB进行海藻废物管理活动,以减少公司的支出并支持可持续,环保的实践。
2022 年 4 月 2 日——此 PFB 涉及德国联邦国防军人力资源部门 IT 支持部门存储您的个人数据。 (DVUstgPersWBw)。
保护区 3 本人员问卷(PFB)用于补充您在能力倾向测试期间收集和存储的个人数据。了解这些数据对于处理您的雇佣关系是必要的(例如,您的军人身份证、雇佣决定、培训目的或在护理保险法的框架内)。此次调查的法律依据是《士兵法》第 29 条第 2 款。同时,本 PFB 告知您有关您的个人数据在德国联邦国防军人力资源部门 (DVUstgPersWBw) 的 IT 支持中的存储情况。根据要求,您可以从负责您人事处理的专业人员那里获取存储在 DVUstgPersWBw 中的人事档案数据的访问权或信息,或者在必要时获取“个人数据证明”(PDN)。当你个人情况发生变化时,你有义务以口头或书面形式向你的单位/部门报告,必要时还需提供证明文件。根据 SG 第 29 条第 1 款,本人事调查问卷将成为您的人事档案的一部分。您必须尽您所知真实、完整地提供以下信息,除非该信息被标记为自愿提供(有关更多信息,请参阅说明表)。自愿提供的信息可随时根据要求删除(撤销)。请用大小写印刷体清晰填写!
摘要。最近提出的量子系统使用频率复用量子比特技术来读取电子器件,而不是模拟电路,以提高系统的成本效益。为了恢复单个通道以供进一步处理,这些系统需要一种解复用或通道化方法,该方法可以低延迟处理高数据速率,并且使用很少的硬件资源。本文介绍了一种使用多相滤波器组 (PFB) 信号处理算法的低延迟、适应性强的基于 FPGA 的通道器。由于只需设计一个原型低通滤波器来处理所有通道,因此 PFB 可以轻松适应不同的要求,并进一步简化滤波器设计。由于每个通道都重复使用相同的滤波器,与传统的数字下变频方法相比,它们还降低了硬件资源利用率。实现的系统架构具有广泛的通用性,允许用户从不同数量的通道、采样位宽度和吞吐量规格中进行选择。对于使用 28 系数转置滤波器和 4 个输出通道的测试设置,所提出的架构可产生 12.8 Gb/s 的吞吐量和 7 个时钟周期的延迟。
摘要 - 与CMOS过程技术缩放,制造纳米级晶体管,触点和互连的掩模成本变得非常昂贵,特别是对于低容量设计。此外,较高的晶体管密度导致了较高的设计复杂性和大型模具,这导致了设计周期时间的增加和过程产量下降。这些挑战迫使小批量应用特异性集成电路(ASIC)朝着高度次优的可编程栅极阵列(FPGAS)朝向高度的。In this arti- cle, we propose a new approach for designing and fabricating high-mix, low-volume heterogeneously integrated ASICs, referred to as Microscale Modular Assembled ASIC (M2A2), consisting of: 1) pick-and-place assembly of prefabricated blocks (PFBs) which utilizes the nano-precision placement capabilities developed in jet-and-flash imprint lithography (J-FIL)和2)EDA设计方法利用无监督的学习和图形匹配技术。EDA方法论利用现有的CAD工具基础架构,以便于当前的EDA生态系统中采用。所提出的制造技术利用采摘和地组装技术允许PFBS的纳米专业组装。PFB可以用高级过程节点制造,然后在晶圆基板上编织在一起。然后可以在PFB编织层的顶部创建/放置定制设计的低成本后端金属层,以实现各种高混合,低量的ASIC设计。M2A2将通过最佳的PFB选择和编织在前端设计中具有更大的功能。在本文中,基于M2A2的设计的性能与不同的设计技术(例如基线ASIC,FPGA和SASIC)相对,在16 nm,40 nm和130 nm CMOS ProudeS节点上。PNR后模拟结果超过15个IWL基准测试表明,所提出的M2A2设计实现了27。11× - 34。89×降低功率 - 否决产物(PDP),并产生1。69× - 2。与基线ASIC相比, 36倍面积。 M2A2设计达到15%–68.5%36倍面积。M2A2设计达到15%–68.5%
有机太阳能电池(OSC)是一种可以将光能转化为电能的设备,它们具有轻巧,灵活,可加工的印刷和大面积的生产的优势,并且是减轻能量降低智能和环境污染的有效方法。由于供体和受体材料的快速发展,主动层形态的优化以及处理技术的成熟度,OSCS的功率转换效率(PCE)超过了19%。通常,OSC由阳极,阴极,电子,孔传输层和一个活动层组成,并且设备性能与活动层的形态密切相关。众所周知,OSC的光物理转换过程包括光子吸收,激子扩散,激子分离,电荷转运和收集。通常,活性层的厚度和成分对光子的吸收具有深远的影响。激子扩散的效率取决于活性层的域大小,crys-钙度和分子取向通常会影响激子分离的过程,并且互穿网络(双连续相分离)是电荷运输和收集的导电性。但是,由于结晶和相分离之间的竞争耦合关系,活动层的形态是无法控制的。因此,已经做出了强烈的努力来优化OSC的形态。简要摘要与本社论中的每本选定论文相关的内容如下:光子吸收对于激子的产生至关重要。在此标题为“有机太阳能电池中的形态控制”的社论中,我们将提供有关如何优化活性层形态的综合观点,以扩展对形态和设备性能之间关系的理解。这本标题为“有机太阳能电池中形态控制的形态控制”的社论呈现六篇论文,包括通过调节活性层的厚度[1]来提高光子的吸收效率[1],并添加第三个成分以制造三元太阳能电池[2],从而通过增强的近距离网络来改善Bilerec and septiser and septiser and septiser [3]结晶度[4],采用侧链工程来调节分子方向[5],最后是制造具有较高设备性能的大区块和灵活的OSC的建议[6]。活性膜的厚度在光子吸收的效率中起着重要作用。在穆罕默德·塔希尔(Muhammad Tahir)[1]中,作者研究了活性层的光学特性,形态和厚度之间的关系。根据UV-VIS吸收光谱和AFM图像,很明显,当纤维厚度在适当的范围内,即PFB 180 nm(即PCBM混合物)中时,某些粗糙度和不均匀的表面更适合于更好的光捕获,从而获得了高尺度的电流密度(因此获得了较高的速度速度电流密度(J SC)。这项工作表明,优化活性层的厚度对于设计具有较高光伏性能的设备是必需的。三元策略也通常被认为是改善光子吸收