系统神经科学方法侧重于大规模大脑组织和网络分析,正在推进认知控制过程在大脑中如何实施的基础知识。在过去十年中,大脑连接研究领域的技术和计算创新推动了我们对大脑网络如何运作的理解,激发了对前额叶皮层 (PFC) 网络在认知控制协调中的作用的新概念化。在这篇综述中,我们描述了参与认知控制的六个关键 PFC 网络,并阐明了理解这些网络如何实施认知控制的关键原则。在不断变化的环境中实施认知控制取决于 PFC 网络的动态和灵活组织。在此背景下,我们描述了近年来出现的主要经验和理论模型,并描述了它们的功能架构和动态组织如何支持灵活的认知控制。我们总体回顾了过去几十年取得的进展,并考虑了有关 PFC 网络功能、全局大脑动力学和认知的基本问题,这些问题仍需解决。最后,我们阐明了认知控制研究的未来重要方向及其对增进我们对脑部疾病中 PFC 网络的理解的意义。
Brain/MINDS 数据门户已经启动,用于共享 Brain/MINDS 项目中产生的数据和知识。该门户旨在为公众提供综合知识,并为开放研究和合作提供原始数据。
注意:Wolfspeed 设计的用于 Wolfspeed ® 组件的评估硬件是一种易碎、高压、高温的电力电子系统,旨在用作实验室环境中的评估工具,并由高素质的技术人员或工程师进行操作。当此硬件未使用时,应将其存放在存储温度范围为 -40° 摄氏度至 105° 摄氏度的区域。如果运输此硬件,应在运输过程中特别小心,以免损坏电路板或其易碎组件,并且应将电路板小心地放在静电放电 (ESD) 袋中,或使用与 Wolfspeed 在运送此硬件时使用的或将使用的保护相同或类似的 ESD 或短路保护,以避免损坏电子元件。如果您对运输过程中此硬件的保护有任何疑问,请通过 forum.wolfspeed.com 联系 Wolfspeed。该硬件不含任何危险物质,不符合任何工业、技术或安全标准或分类,也不是符合生产要求的组件。
制冷仍消耗大量能源,2001 年用于空调的电力超过 1800 亿千瓦时,约占住宅总能源消耗的 16% 和美国总电力消耗的 5% [2]。需要进一步提高效率,不仅是为了节约能源,也是为了减少“温室”气体和其他污染物的排放,因为美国 70% 以上的电力是通过燃烧化石燃料产生的,近 50% 是通过燃烧煤炭产生的 [3]。2006 年 1 月,新法规生效,将美国空调系统的最低 SEER(季节性能源效率等级)从 10 提高到 13,这将使空调负荷减少 25%。这种节省不仅对使用的总能量很重要,而且还因为它减少了夏季高峰负荷所需的发电能力。如果我们假设 8000 万户使用空调的家庭的平均制冷能力为 8.8kW (30,000BTU),那么平均 SEER 为 10 的峰值空调负荷为 240,000MW,需要大约 240 个非常大的煤电厂或核电厂。节省 25% 的能源可以消除建造 60 个大型昂贵发电厂的需要。日本多年来一直在节能方面处于领先地位,特别是自 20 世纪 70 年代的能源危机以来,当时日本 77% 以上的能源供应来自进口石油 [4]。在过去的三十多年里,这种依赖性已经减少到 50% 左右,但各部门的节能仍然是主要优先事项。家电效率也得到了显著提高,这有助于日本的 GPD 与能源消耗之比大大低于主要发达国家,事实上,比美国低 2.5 倍以上。这是通过提高消费者电价(是美国的两倍多)和为家电制造商制定节能标准实现的。例如,平均能源
2023年7月21日,果阿:作为其计划的一部分,将自己定位为能源过渡的重点资助机构,Power Finance Corporation Ltd(PFC)执行了超过23.7万卢比的各种谅解备忘录(MOU),其中20千万卢比在公共部门和私营部门中都执行了20亿卢比。这些谅解备忘录与太阳能,风能,绿色氢,电池存储,电动汽车公司以及绿色能源设备的制造商以及清洁能源空间中的其他产品一起签名。Adani,Greenco,Renew,Continuum,Avaada,JBM Auto,Megha Engineering&Infrastructure Limited,Rajasthan Reenwable Energy是PFC签署MOU的一些公司。PFC是印度能源过渡的主要金融家,这些谅解备忘录强调了PFC致力于持续增加其能源过渡组合和转向国家的能源过渡目标的承诺。谅解备忘录在印度G20总统期间正在进行的有关能源过渡的审议的背景下具有重要意义。
1. 吉林华微电子有限公司的产品销售方式为直销或代理销售,客户订货时请与我公司核实。 2. 我们强烈建议客户在购买我公司产品时仔细查看商标,如有任何问题,请随时与我们联系。 3. 电路设计时请不要超过器件的绝对最大额定值。 4. 吉林华微电子有限公司保留对本规格书进行更改的权利,如有更改,恕不另行通知。
• 第 6 中队、第 1 骑兵团、第 1 装甲旅战斗队 (ABCT)、第 1 装甲师:PFC Tayvion Jones、SGT Ryan Austin、SPC Dade Horton、SPC Wyatt Carson、SPC Kadin Graham 和 SSG Rebiejo Zackery。• 第 1 中队、第 4 骑兵团、第 1 装甲旅战斗队、第 1 骑兵师:SSG Levi Cowart、SPC Carlin Coomey、SPC Patricio Alduvin、SPC Michael Stitely、PFC Aiden Harris 和 PFC Aiden Hernley。 • 第 1 营、第 5 骑兵团、第 2 ABCT、第 1 骑兵师:SSG Tyler Mehl、SGT Eric Szudy、SPC Gregory Harrington、SPC James Saul、PFC Itler Mbula 和 PFC Alexander Erickson。• 第 4 中队、第 3 美国骑兵团、第 1 骑兵师:SSG Noah Kokkeler、SGT Alberto Torres、SPC Corey Catron、PFC Cameron Waites、PV2 Iaza Ingoglia 和 PV2 Braxton Flicker。 • 第 8 中队、第 1 骑兵团、第 2 斯瑞克旅战斗队 (SBCT)、第 2 步兵师:SSG Nicolas Vallez、SGT Matthew Keylich、SPC Rasheed Wallace、PFC Eric Moldenhauer、PFC Skylur Hester 和 PFC Carson Ringler。 • 第 4 中队、第 2 骑兵团、第 2 CR、美国陆军欧洲和非洲 (USAEUR-AF):SSG Ryan Cardiff、SGT John Wendt、SPC Brian Riverang、SPC Ryan Rocha、SPC Benjamin Walker 和 PFC David Doucette。 • 第 6 中队、第 8 骑兵团、第 2 ABCT、第 3 步兵师:SGT Charles Johnson、SGT Casey Trull、SPC Jose Cota、SPC Cameron Palmer、PFC Ethan Conley 和 PFC Jordan Calfy。 • 第 2 中队、第 1 骑兵团、第 1 SBCT、第 4 步兵师:SSG Steven Bouton、SGT Liam Mackrell、SPC Travis Pembridge、SPC Christopher Cancel、SPC Christian Suchite 和 PV2 Darren Manriquez。 • 第 1 中队、第 14 骑兵团、第 1 SBCT、第 7 步兵师:SSG Wyatt Lilienthal、SGT Steven Reynoso、SPC Rafael Lopez、SPC Byron Kyger、SPC Guillermo Carrera 和 SPC Matthew Kiddle。 • 第 3 中队、第 89 骑兵团、第 3 IBCT、第 10 山地师:SSG Shawn Deen、SGT Joshua Valesco、SPC Tyler Deaton、SPC Adrian Fuentez、PFC Walter Moreno 和 PFC Henry Swearingen。 • 第 2 中队、第 11 装甲骑兵团 (ACR)、第 11 ACR、国家训练中心:SSG Hendryx- Steven Solis、SGT Gyres Fouelefack、SPC Dalton Langer、SPC John Pacheco、SPC Jonathan Whiteside 和 SPC Matthew Runk。• 第 5 中队、第 1 骑兵团、第 1 IBCT、第 11 空降师:SSG Wayne Schultz、SGT Seth Marshall、PFC Cameron Patrick、PFC Damian Tapia、PFC Aiden Wood 和 PV2 Austin Heath。 • 第 2 中队、第 14 骑兵团、第 2 步兵战斗旅、第 25 步兵师:SSG Jacob Lahti、SGT Michael Green、SPC Mason Golden、PFC Sebastien Barragan、PFC Diego Cade 和 PFC Damien Deleon。• 第 1 中队、第 73 骑兵团、第 2 步兵战斗旅、第 82 空降师:SSG Eric Nevadunsky、SGT Julian Glasser、SPC Mario Flamenco、SPC Andrew Rutherford、SPC Santos Portillo 和 SPC Parker Holland。 • 第 1 中队、第 33 骑兵团、第 3 旅战斗队、第 3 IBCT、第 101 空降师:SSG Joseph Rosas、SGT Connor Pelletier、SPC Michael Joaquin、SPC Henry Wasserman、PFC Aidan Nelson 和 PFC Joseph Smith。• 爱尔兰第 1 装甲骑兵中队:LT Alex McNamara,SGT Kevin Conlon、CPL Anthony Sheehy、TPR Gabriel Garbencius、TPR Declan Behan 和 TPR Oisin Duffy。• 美国欧洲陆军空军第 1 中队、第 91 骑兵团、第 173 空降旅:SSG Graham Brown、SGT Jake Bullock、SPC Nicholas DuBois、SPC Anthony Valdez、PFC Jonathan Wilkey 和 PV2 Tyler Solaita。
摘要:环境的可持续性和生态耐用性是即将到来的材料时代的必要基准。在结构组件中使用可持续的植物纤维复合材料(PFC)在工业社区中引起了显着兴趣。PFC的耐用性是一个重要的考虑因素,需要在其广泛应用之前对其进行充分理解。水分/水老化,蠕变特性和疲劳性能是PFC耐用性的最关键方面。目前,提出的方法(例如纤维表面处理)可以减轻吸水对PFC机械性能的影响,但完全消除似乎是不可能的,因此限制了PFC在潮湿环境中的应用。PFC中的蠕变没有像水/水分老化那样受到关注。现有的研究已经发现,由于植物纤维的独特微观结构,PFC的显着蠕变变形显着,幸运的是,尽管数据仍然有限,但据报道,增强纤维 - 纤维纤维粘结键可以有效地提高蠕变耐性。关于PFC中的疲劳研究,大多数研究都集中在张力张紧疲劳特性上,但需要更多注意与压缩相关的疲劳性能。PFC在其最终拉伸强度(UTS)的40%的张力疲劳负荷下表现出了一百万个周期的耐力,而与植物纤维类型和纺织结构无关。这些发现在使用PFC进行结构应用中增强了信心,只要采取特殊措施来减轻蠕变和吸水。本文根据上述三个关键因素概述了有关PFC耐用性的当前状态,并讨论了相关的改进方法,希望它可以为读者提供有关PFCS耐用性的全面概述,并强调值得进一步研究的领域。
发育中的前额叶皮层(PFC)中的5-羟色胺(5-HT)不平衡与长期行为差异有关。然而,尚不清楚5-HT介导的PFC发育的突触机制。我们发现,在产后两周中,PFC中5-HT释放的化学发生抑制和增强降低并增加了小鼠前额叶2/3锥体神经元上兴奋性脊柱突触的密度和强度。在单个棘突上释放5-HT诱导的结构和功能长期增强(LTP),以谷氨酸能活性非依赖性方式需要5-HT2A和5-HT7受体信号。值得注意的是,诱导5-HT刺激的LTP刺激通过5-HT7GαS激活增加了新形成的棘突(≥6h)的长期存活。在第一周,但没有增加兴奋性突触的密度和强度,慢性治疗小鼠(一种选择性5-羟色胺解脱抑制剂)的小鼠。 5-HT2A和5-HT7受体拮抗剂消除了氟西汀对体内PFC突触改变的影响。 我们的数据描述了产后早期发育期间PFC中PFC中单个棘水平的5-HT依赖性兴奋性突触可塑性的分子基础。慢性治疗小鼠(一种选择性5-羟色胺解脱抑制剂)的小鼠。5-HT2A和5-HT7受体拮抗剂消除了氟西汀对体内PFC突触改变的影响。我们的数据描述了产后早期发育期间PFC中PFC中单个棘水平的5-HT依赖性兴奋性突触可塑性的分子基础。
前额叶皮层(PFC)在目标定向的认知中起关键作用,但其代表性代码仍然是一个开放的问题,即解码技术在解散与PFC的任务相关变量方面有效。在这里,我们将正则线性判别分析应用于人类头皮脑电图数据,并能够区分智力旋转任务与具有87%解码精度的色彩感知任务。侧面PFC中的背侧和腹侧区域提供了分离这两个任务的主要特征。我们的发现表明,脑电图可以可靠地从PFC解码两个独立的任务状态,并强调PFC背或腹侧功能特定在处理Where旋转任务与哪种颜色任务时。