5 “CHIPS 激励计划下现有半导体制造设施现代化和内部扩建的程序性环境评估 (PEA) 草案”,美国商务部 CHIPS 计划办公室,2023 年 12 月,第 B-7 页,https://www.nist.gov/system/files/documents/2023/12/26/CHIPS%20Modernization%20Draft %20PEA.pdf 6 “PFOS 和 PFOA 转化为半导体制造中使用的短链 PFAS 含材料”,SIA PFAS 联盟,2023 年 6 月 5 日,第 11 页。 7 Paige Jacob、Kristas Barzen-Hanson 和 Damian Helbling,“电子制造设施废水中全氟和多氟烷基物质的目标和非目标分析”,环境科学与技术,2021 年 2 月 16 日,第2353. https://pubs.acs.org/doi/10.1021/acs.est.0c06690 。本研究由半导体行业赞助 8 “方法 1621:通过燃烧离子色谱法测定水基质中的可吸附有机氟 (AOF)”,美国环保局水务办公室,2024 年 1 月,第 1 页,https://www.epa.gov/system/files/documents/2024-01/method-1621-for-web-posting.pdf
执行总结伯里尔维尔镇正在伯里尔维尔高中安装人造草皮田。。该报告已准备好解决这些问题。基于迄今为止进行的评估,已经证明,人造草皮中非常有限数量的PFA的检测对使用人造草皮球场的人并不代表人类健康风险,并且不会对环境,地下水,地表水和含水剂构成风险。有关更多详细信息,请参阅本报告的第2.0节。在一个野外地毯草皮样品的浸出液中,检测到的一个PFA浓度远低于地下水监管筛查标准(检测到比每万亿个筛查标准的20个(PPT)低87倍,或者以1.15%的限制,将其结合在浸出液的情况下,以1.15%的筛查标准检测到。因此,基于地毯草皮浸出物中该PFA的存在,不会对环境产生不利影响。美国环境保护局(USEPA)和罗德岛筛查标准用于此评估。有关更多详细信息,请参阅第2.0节和表3。预计在使用时会与人造草皮进行物理接触。一些人造草皮样品包含有限数量的PFA的低水平痕量浓度(据报道为“ J”估计值)。与基于健康的筛查水平相比,浓度是低于目标基准水平的数量级,因此表明暴露于这些化合物的风险没有明显的风险。全氟辛酸(PFOA)和全氟辛烷磺酸(PFO)是最关注的PFA的两个。PFOA。一个样本中检测到的PFO浓度低于Rhode Island的背景值,远低于人类健康风险筛查标准(检测到47倍低于每十亿分之6.3 [PPB]风险筛查标准,或以2.14%的风险筛查标准检测到)。所有其他PFA都大大低于筛选标准。Rhode Island筛查标准没有用于此评估;作为替代品,使用了USEPA和新英格兰各州的最低筛查标准。有关更多详细信息,请参阅第2.0节和表2。测试了两个橡胶填充样品的30个PFA,在任何样品中均未检测到PFA。有关更多详细信息,请参阅第2节。
•调查状态的更新; •调查的指标和数据分析; •计划资金和支出; •实施策略和修改; •计划注意事项和下一步; •对立法机关的建议。P.L. 2021,c。 478要求部门在2024日历年结束之前完成一半的调查,并在2025年日历年结束之前完成整个调查。 这是基于2021年提交给立法机关的700个地点的初步估算。 随着调查的进行,该部门还确定了需要调查的366个“站点”。 由于员工彻底查看了数十年的项目文件,因此发现了其他信息。 使用原始的700个站点的原始估计数量,该部达到了土壤和地下水调查所需的50%目标。 使用当前确定的地点总数(1,066),该部门已完成了约42%的土壤调查和45%的地下水调查。 截至2024年10月31日,该部门已收集了约2,919个(主要是住宅)地下水样本。 ,有80%低于缅因州的临时饮用水标准,即20万亿(ppt),总计为6个PFA(PFOA,PFO,PFO,PFNA,PFHXS,PFHXS,PFHPA和PFDA)。 剩余的20%超过了图ES-1中所示的类别。 农业,保护和林业部(DACF)表示,采样的35个农场的地下水水平超过了临时饮用水标准。P.L.2021,c。 478要求部门在2024日历年结束之前完成一半的调查,并在2025年日历年结束之前完成整个调查。这是基于2021年提交给立法机关的700个地点的初步估算。随着调查的进行,该部门还确定了需要调查的366个“站点”。由于员工彻底查看了数十年的项目文件,因此发现了其他信息。使用原始的700个站点的原始估计数量,该部达到了土壤和地下水调查所需的50%目标。使用当前确定的地点总数(1,066),该部门已完成了约42%的土壤调查和45%的地下水调查。截至2024年10月31日,该部门已收集了约2,919个(主要是住宅)地下水样本。,有80%低于缅因州的临时饮用水标准,即20万亿(ppt),总计为6个PFA(PFOA,PFO,PFO,PFNA,PFHXS,PFHXS,PFHPA和PFDA)。剩余的20%超过了图ES-1中所示的类别。农业,保护和林业部(DACF)表示,采样的35个农场的地下水水平超过了临时饮用水标准。
宾夕法尼亚州霍舍姆海军设施工程系统司令部基地调整和关闭办公室 (NAVFAC BRAC PMO) 与美国环境保护署和宾夕法尼亚州环境保护部合作,邀请公众就工程评估/成本分析 (EE/CA) 发表意见,该分析旨在提出一项清除行动,解决前海军航空站联合预备基地 (NASJRB) Willow Grove 受全氟和多氟烷基物质 (PFAS) 影响的地下水问题。EE/CA 介绍了对处理流程、建筑替代方案、系统排放选项和首选替代方案的评估,专门用于解决 680 号建筑和 5 号场地 - 消防训练区附近地下水中的 PFAS,是根据《综合环境反应、赔偿和责任法案》(CERCLA)(也称为超级基金)制定的。清除行动的目的是通过抽取全氟辛酸 (PFOA) 和/或全氟辛烷磺酸 (PFOS) 浓度最高的地下水,减少 680 号建筑和 5 号场地(消防训练区)附近基地地下水中的 PFAS 含量。社区意见是前 NASJRB Willow Grove 清除行动替代方案选择过程不可或缺的一部分。鼓励公众审查和评论此 EE/CA。公众可以通过将书面意见发送到以下地址或通过电子邮件发送评论。
环境有毒物质(ETS)与不利的健康结果有关。在这里,我们假设向ETS的博览会调查与肥胖和胰岛素抵抗有关,部分通过失调的肠道菌群和次级胆汁酸血清水平的变化(BAS)有关。血清BAS,每氟烷基物质(PFA)和另外27个ET通过264个DANES(121名男性和143名女性,56.6±7.3岁的女性,BMI 29.7±6.0 kg/m 2)的质谱测量,使用靶标和均匀的筛查方法组合。根据从粪便样品中提取的DNA的全基因组shot枪测序(WGS)鉴定出细菌种类。开发了肠道微生物群落的个性化基因组规模代谢模型(GEM),以阐明BA途径的调节。随后,我们将人类研究的发现与PPARα人性化的小鼠暴露于全氟辛酸(PFOA)的代谢意义。十二个ET的血清水平与肥胖和胰岛素抵抗有关。高化学暴露与几种细菌物种的丰度增加有关(spp。)属(Anaerotruncus,alistipes,bacteroides,Bifidobacterium,梭状芽胞杆菌,Dorea,Eubacterium,Eubacterium,Escherichia,Prevotella,Prevotella,Ruminocococcus,Roseburia,subdoligranulum和Veillonella),尤其是男性。相反,较高暴露组的女性显示出
11-氯磷酸-3-氧化烷-1-磺酸11cl-pf3Ouds 763051-92-9 9-氯hexadecafluoro-3- oxanonane-1-磺酸9cl-pfonic酸9cl-pfonic酸9cl-pf3ons 756426-58-1 4,8-1 4,8-dioxa-3h-perfluonon, 919005-14-4六氟丙烷氧化物二聚体HFPO-DA 13252-13-6 NONAFLUORO-3,6-DIOXAHEPTANOIC NFDHA NFDHA 151772-58-58-58-5 1H,1H, 2H, 2H-Perfluorodecane sulfonic acid 8:2FTS 39108-34-4 Perfluorodecanoic acid PFDA 335-76-2 Perfluorododecanoic acid PFDoA 307-55-1 Perfluoro(2-ethoxyethane) sulfonic acid PFEESA 113507-82-7全氟乙烷硫酸PPFHP 375-92-8全氟heptanoic酸PFHPA 375-85-9 1H,1H,1H,2H,2H,2H-氟Hexane磺酸4:2H-甲己烷磺酸4:2H- Perfluorohexanoic acid PFHxA 307-24-4 Perfluoro-3-methoxypropanoic acid PFMPA 377-73-1 Perfluoro-4-methoxybutanoic acid PFMBA 863090-89-5 Perfluorononanoic acid PFNA 375-95-1 1H,1H, 2H, 2H-Perfluorooctane sulfonic acid 6:2FTS 27619-97-2 Perfluorooctanesulfonic acid PFOS 1763-23-1 Perfluorooctanoic acid PFOA 335-67-1 Perfluoropentanoic acid PFPeA 2706-90-3 Perfluoropentanesulfonic PFPeS 2706-91-4 Perfluoroundecanoic acid PFUnA 2058-94-8 *N-ethyl perfluorooctanesulfonamidoacetic acid NEtFOSAA 2991-50-6 * N-methyl perfluorooctanesulfonamidoacetic acid NMeFOSAA 2355-31-9 * Perfluorotetradecanoic acid PFTA 376-06-7 *全氟二烷酸PFTRDA 72629-94-8分析物总数 - 29 A CASRN或CAS注册表,是一种唯一的数字标识符,与一种化学物质和相关信息相对应。
恢复咨询委员会空军土木工程中心问:什么是 RAB 及其目的?答:RAB 是一个交流信息和讨论环境恢复计划的论坛。RAB 的唯一目的是讨论整个环境恢复计划中的所有环境工作,并允许社区成员为清理过程提供意见。问:RAB 的组成是什么?成为成员的选拔程序是什么?答:RAB 的人数通常不应超过 20 人,由当地社区成员、国防部代表、州代表以及 EPA 代表(视情况而定)组成。空军有责任向社区宣传 RAB 并提供参与机会。RAB 成员应在受影响的社区生活/工作,或受到环境恢复计划的影响。设施指挥官应与州政府、环保局和空军土木工程中心协商,确定社区利益,并征求能够代表这些利益进入遴选小组的个人姓名。遴选小组提名人选出后,指挥官将审查遴选小组提名,以确保平衡和多样性。如果提名代表了社区的多样性,他们将成为遴选小组。问:RAB 和公开会议有什么区别?答:公开会议是为了分享信息和讨论特定主题而举行的。公开会议允许社区成员表达意见并为特定项目(例如 PFOS/PFOA)制定解决方案。RAB 专门关注设施中的所有空军环境恢复活动,并且只关注属于恢复计划的活动。两次会议:
ACC 美国化学理事会 ADONA 4,8-二氧杂-3H-全氟壬酸铵的商品名,3M 氟聚合物加工助剂技术中使用的一种化学品 AF&PA 美国森林与造纸协会 AFFF 水性成膜泡沫 APFO 全氟辛酸铵(PFOA 的铵盐) ASTSWMO 州与地区固体废物管理官员协会 ATSDR 美国卫生与公众服务部,有毒物质与疾病登记署 BAF 生物累积因子 BCF 生物浓缩因子 CAFE 美国国家海洋与大气管理局化学品水生生物命运与影响数据库 CBI 机密商业信息 CDR 化学数据报告 CFR 联邦法规 CWA 清洁水法 DMR 排放监测报告 DOD 美国国防部 DONA 4,8-二氧杂-3H-全氟壬酸的商品名,3M 氟聚合物加工助剂技术中使用的一种化学品 DWTD 饮用水可处理性数据库 DWTP 饮用水处理工厂 ELG 废水排放限制指南和标准 EPA 美国环境保护署 EPA OPPT 美国环境保护署,化学品安全和污染防治办公室,污染防治和毒物办公室 ETFE 乙烯四氟乙烯 F-53B 氯化多氟烷基醚磺酸的商品名,包括 9Cl-PF3ONS(“F-53B 主”)、11Cl-PF3OUdS(“F-53B 次”)及其钾盐 FAA 美国部门
佐治亚州法规和条例 391-3-6 (GA. COMP. R. & REGS. 391-3-6) 在两种情况下将 MCL 确立为废水处理设施的合规点。首先,对于土地应用系统,根据 GA. COMP. R. & REGS. 391-3-6-.11(4)(e),“根据第 391-3-5 章及其后续修订,离开土地处置系统边界的地下水不得超过饮用水的最大污染物水平。”此外,对于点源排放者,根据 GA. COMP. R. & REGS. 391-3-6-.03(6)(a)(iv),“任何材料或物质在经过公共水处理系统处理后,其浓度不得超过环境保护部门根据佐治亚州安全饮用水规则为该物质确定的最大污染物水平。”在佐治亚州采用第 391-3-5 章中关于饮用水的 MCL 后,LAS 许可证持有者将被要求满足下游监测井地下水的新 MCL。将对 NPDES 允许排放到指定用于饮用水的接收溪流的排放进行评估,以确保 PFAS 在经过公共供水系统处理后不会超过 MCL。本文件概述了 EPD 将这些新要求(包括监测)纳入废水许可证的策略。目前,佐治亚州没有针对 PFAS 的溪流水质标准,也没有联邦政府为 PFAS 制定的技术限制。但是,2024 年 10 月 7 日,EPA 发布了《针对选定 PFAS 的水生生物标准和基准的最终推荐》。2024 年 12 月 17 日,EPA 发布了《针对 PFOA、PFOS 和 PFBS 的保护人类健康的国家推荐环境水质标准草案》。如果提出了 PFAS 的水质标准或基于技术的限制,则本文档将在未来更新。
在饮用水生产过程中使用快速砂过滤(RSF),用于去除颗粒,可能有害的微生物,有机物质和无机化合物,例如铁,锰,铵和甲烷。但是,RSF也可用于去除某些有机微污染物(OPM)。在这项研究中,可以通过生物增强来刺激填充全尺度RSF的沙子的柱子中的拆卸(即用另一个RSF的沙子接种RSF和/或生物刺激(即添加刺激微生物生长的营养素,维生素和微量元素)。结果表明,柱中的PFOA,卡马西平,1-H苯并二唑,苯并二氮酸酯和二氨二醇的去除量很低(<20%)。普萘洛尔和双氯芬酸的去除率更高(50 - 60%),可能通过吸附过程发生普萘洛尔去除,而对于双氯芬酸,尚不清楚去除是否是物理化学和生物学培训的组合。此外,生物学和生物刺激导致38天后加巴喷蛋白和美托洛尔的99%去除,孵育52天后去除99%。没有生物刺激的生物仪柱显示52天后加巴喷丁和美托洛尔的去除率为99%,在80天后进行了Acesulfame。相比之下,非生物仪的柱未去除加巴喷丁,去除<40%的美托洛尔,仅在孵育80天后才显示出99%的丙硫酸含量。去除这些OMP与铵氧化和氨氧化细菌的绝对丰度负相关。16S rRNA基因测序表明,丙硫酸含量,加巴喷丁和美托洛尔的抗粉化与特定细菌属的相对丰度呈正相关,这些属的物种含有异养和有氧或有氧或硝化的代谢。这些结果表明,RSF的生物提升可以成功地去除,在这种情况下,生物刺激可以加速这种去除。