脉搏率(PR)是评估一个人健康的最重要标记之一。随着对长期健康监测的需求不断增长,使用成像光电学(IPPG)对非接触式PR估计的关注非常关注。这种非侵入性技术基于肤色细微变化的分析。尽管可以改善IPPG,但现有算法容易受到较不受约束的场景(即头部移动,面部表情和环境条件)。在本文中,我们提出了一个新颖的端到端时空网络,即X-ippgnet,直接从面部视频记录中直接进行瞬时PR估计。不像大多数现有系统一样,我们的模型从头开始学习IPPG概念,而无需结合任何先验知识或通过提取血液体积脉冲信号的提取。受Xception网络体系结构的启发,颜色通道解耦用于学习其他照相学信息信息,并概念地降低计算成本和内存重新质量。此外,X-ippGnet可以从短时间窗口(2秒)中预测脉搏率,该脉冲率具有较高且明显的脉搏率的优点。实验结果揭示了在所有条件下的高性能,包括头部运动,面部表情和肤色。我们的AP-PRACH明显优于三个基准数据集上的所有当前最新方法:MMSE-HR(MAE = 4。10; RMSE = 5。32; r = 0。85),ubfc-rppg(Mae = 4。99; RMSE = 6。26; r = 0。67),mahnob-hci(Mae = 3。17; RMSE = 3。93; r = 0。88)。