微生物通过减少化学施肥的需求,在植物营养方面在农业中至关重要。近年来,促进植物生长细菌(PGPB)已被广泛用作农业生物肥料(BF)。进行了这项研究,以确定促进植物生长细菌对豌豆植物发展的影响。首先确定了本研究中使用的细菌的磷酸盐溶解和氮固定电位。在研究中,4种不同组合的效果,F1 [(根瘤菌(FR-13)和假单胞菌Alcaligenes(FDG121)],F2 [(Pseudomonas荧光型生物型F(FDG-7),根瘤菌(FR-18)和芽孢杆菌 - GC亚组B(FDG-134)],F3 [Chrthrobacter oxydans(FDG-72),杆菌-GC亚组B(FDG-146),Rhizobium sp。(FR-11)]和F4 [ACINETOBACTER GENOSPECIES 9(FDG-116),BREVIBACILLUS AGRI(FDG-118),ZATMANIII(FDG-123)甲基杆菌(FDG-123)和杆菌-Megaterium-Megaterium-GC-GC亚级亚基A(FDG-153)。用细菌制成的配方在这些菌株中指定的特性中被发现是在温室条件下针对豌豆植物进行测试的,并研究了它们对植物总新鲜和干重的影响。该研究的设置为3个复制。是通过获得的数据进行的统计分析的结果,与对照相比使用的制剂; F2,F3和F1应用在总重量中分别很重要,而F2和F3应用在总干重中很重要。因此,这三种制剂对豌豆植物的产量特别有效,可以用作潜在的生物肥料。
根结线虫(Meloidogyne spp。,rkn)是全球最具破坏性的内寄生虫线虫之一,通常导致作物生长和产量的降低。洞悉宿主-RKN相互作用的动力学,尤其是在不同的生物和非生物环境中,对于设计新型的RKN缓解措施可能是关键的。植物促进生长细菌(PGPB)涉及不同的植物生长增强活动,例如生物铜质化,病原体抑制和全身耐药性的诱导。我们总结了有关PGPB和非生物因素(例如土壤pH,质地,结构,水分等)作用的最新知识。在调节RKN-host相互作用中。rkn直接或间接地受到不同PGPB的影响,相互作用中的非生物因子相互作用以及对RKN感染的宿主反应。我们强调了(i)PGPB直接和间接影响RKN-宿主相互作用的三方(host-rkn-pgpb)现象; (ii)宿主对根际PGPB的选择和富集的影响; (iii)土壤微生物如何增强RKN寄生虫; (iv)宿主在RKN-PGPB相互作用中的影响,以及(v)非生物因子在调节三方相互作用中的作用。此外,我们讨论了不同的农业实践如何改变相互作用。最后,我们强调将三方互动知识纳入集成的RKN管理策略的重要性。
土壤是重要的生态系统成分;它是许多微观生物的栖息地,它们在生态系统的维持和土壤中生长的作物中起着重要作用。不幸的是,人类的活动不仅对环境而且对土壤健康产生了不利影响。土壤已被重金属碳氢化合物和基于碳氢化合物的产品污染,这些产品影响了土壤健康和植物的生长。在本综述中讨论了两种重金属修复方法。一种是促进植物生长细菌(PGPB)在增强植物修复中的作用,另一种是堆肥。pGPB通过为植物提供营养,这些植物在重金属的植物修复中起作用,从而帮助植物更好地生长。在堆肥中,有针对性的污染物(如石油产品,农药和氯苯酚)的作用腐烂了。PGPB的使用提供了一种有效且无污染的解决方案,用于从土壤中去除重金属,同时堆肥会导致不同的碳氢化合物的矿化,矿物质也成为土壤增强其健康状况的一部分。同样,这些技术有助于从土壤中去除有害的有机和无机污染物并恢复它。
摘要:土壤盐分抑制作物发芽和幼苗生长,导致作物立地不均、生长不均匀、产量低下。本研究旨在评估接种从盐渍土中分离的植物生长促进细菌 (PGPB) 菌株 (E1 和 T7) 的十字花科种子的早期耐盐性。在对照和盐度条件下培养未接种和接种的 Lobularia maritima、Sinapis alba 和 Brassica napus 种子,首先在琼脂平板中评估每种盐的发芽抑制浓度,然后在用含有 0 或 75 mM NaCl 的水灌溉的土壤中培养。我们的结果表明,T7 是唯一能够在盐渍条件下增加 L. maritima 发芽的菌株。然而,接种 T7 的 L. maritima 和 S. alba 植物以及接种 E1 的 B. napus 植物的茎生物量、根长和分枝数均有所增加。同时,这些幼苗表现出较少的氧化损伤和更强的平衡植物活性氧生成的能力。这项研究表明,用耐盐 PGPB 菌株接种种子是一种适合在早期阶段改善盐度负面影响的策略。尽管如此,观察到的特定植物-宿主相互作用凸显了针对特定不利环境条件建立定制的 PGPB-作物关联的必要性。
在不懈地追求可持续的农业实践时,社会已经凝视着替代合成化肥的替代方案,并认识到它们对它们施加的显着环境影响。在众多替代方案中,使用促进植物生长的细菌(PGPB)的使用已成为一种有前途的解决方案,鼓励以既有效又具有环境可持续性的方式彻底改变植物营养的潜力。植物与PGPB之间的相互作用是自然界的奇观,其中包括各种相互作用,这些相互作用远远超出了简单的营养提供。这些显着的微生物通过利用不可用的营养素并合成必需的植物激素的能力,对植物代谢产生了深远的影响,即使在具有挑战性的条件下,增强了生长和韧性。挑战的核心是植物 - 微生物相互作用的神秘性质,充满了使甚至最经验丰富的研究人员混淆的复杂性。寻求阐明各种环境条件的植物与微生物之间的动态相互作用仍然是一项艰巨的任务,但对于释放PGPB在可持续农业中的全部潜力至关重要的任务。在他们对知识的不懈追求中,研究人员利用了奥米奇技术的力量破译了基于植物与细菌之间共生关系的生化,遗传,基因组和分子相互作用的复杂网络。,尽管取得了进展,但许多谜团仍未解决,令人着迷的发现正在等待探索。在我们坚定地致力于提高作物改善和促进可持续农业的承诺中,我们很自豪地提出一个研究主题,致力于揭开植物 - 细菌关系的奥秘。当前的研究主题包括一份综述,一份简短的研究报告文章和10项针对(i)选择有效的微生物菌株的原始研究及其在减轻非生物压力的潜力方面的表征; (ii)利用有效的微生物物种增强
在主要类别的植物激素,生长素,gibberellins和cytokinins中广泛用于植物传播。这些激素会影响植物的生理和发育过程,例如根开始,顶端优势,种子发芽,叶片扩张以及芽,花朵和水果的发育。发现其外源应用可显着改善几种重要植物的生长。这项研究旨在确定植物生长调节剂(PGR)的有效性,这些调节剂(PGRS)来自自然存在的植物生长细菌(PGPB)在所选农作物的生产和传播中的有效性。在这项研究中,从天然存在的PGPB芽孢杆菌sp中提取吲哚 - 3-乙酸(IAA)和gaberellicac(GA)。提取的激素被纳米成型,以使植物中的受控释放和增加。将纳米成型激素应用于咖啡的繁殖以及茄子和装饰物的产生中。结果表明,与市售的生长素相比,纳米成型IAA(纳米-IAA)的应用显着提高了咖啡的存活率。纳米-IAA提高了酸性土壤中茄子的发芽率和九重奏在阴性对照(水)上的根源出现,但与市售的生长素相当。纳米制造的气体和市售
摘要:促进植物生长细菌(PGPB)可以通过促进养分摄取,氮固定,防止病原体,胁迫耐受性和/或增强植物产生的生产来增强植物健康。驱动植物 - 细菌关联的遗传决定因素仍在研究中。为了鉴定与对PGPB有反应的性状高度相关的遗传基因座,我们使用了用Azoarcus olearius dqs-4 t处理的拟南芥种群进行了全基因组关联研究(GWAS)。表型,通过改善,抑制或不影响根系或射击特征,对细菌治疗的305次拟南芥饰物对细菌治疗的反应不同。GWA映射分析鉴定了几个与初级根长或根新鲜重量相关的预测基因座。进行了两项统计分析,以缩小潜在基因候选物,然后进行单倍型块分析,从而鉴定出与拟南芥根新鲜重量对细菌接种的反应性相关的11个基因座。我们的结果表明,植物对A. olearius dqs-4 T响应接种的能力的差异很大,同时揭示了与所测量的生长性状相关的基因座的相当复杂性。这项研究是可持续繁殖策略的有希望的起点,用于未来的种植实践,可以采用有益的微生物和/或根部微生物组的修改。
迅速增加的人口,加上气候变化以及对合成肥料过度依赖的数十年,导致了两个紧迫的全球挑战:粮食不安全和土地退化。因此,至关重要的是,实践可以使土壤和植物健康以及可持续性更加积极地追求至关重要。可持续性和土壤生育能力包括诸如改善贫困和干旱土壤中植物生产力,保持土壤健康的生产力,并最大程度地减少对贫困土壤管理带来的生态系统的有害影响,包括农业化学品和其他污染物的径流。促进细菌(PGPB)的植物生长可以通过多种方式改善粮食生产:通过促进宏观和微量营养素的资源获取(尤其是N和P),调节植物激素水平,拮抗致病因素并维持土壤生育能力。PGPB包括属于多个门的细菌的不同功能和分类群,包括蛋白质细菌,富公司,细菌,细菌和静脉细菌等。本综述总结了这些有益的土壤细菌用来促进植物健康的机制和方法,并询问它们是否可以进一步发展为有效的,潜在的商业植物刺激剂,这些植物刺激剂实质上降低或替换了涉及食品生产和生态系统稳定性的各种有害实践。我们的目标是描述有益植物 - 微生物相互作用涉及的各种机制,以及它们如何帮助我们实现可持续性。
在地中海地区提高柑橘的氮摄取效率,该农作物预先占主导地位,对于降低地下水污染和增强环境可使性至关重要。这与农场与分叉战略(欧洲绿色交易)目标保持一致,该目标旨在将矿物肥料的使用最多减少20%,并完全消除氮污染的土壤。在这种情况下,探索植物生长促进细菌以减少养分输入的潜力是一个有前途的机会。本研究的目的是评估单独接种的两种枯草芽孢杆菌菌株的作用,或与酿酒酵母结合使用15 N标记的肥料摄取效率和生理参数。个体接种对树水的积极影响,叶叶绿素浓度(Spad-values)和光合作用的prove摄,从而增强了树木的生长。肥料-15 N使用效率提高,磷和钾摄入也是如此。相反,在与S酿酒酵母共接种的树木中未观察到任何反应。因此,PGPB可以被认为是减少柑橘园合成肥料的一种有趣手段,从而最大程度地减少了环境影响并实现可持续生产实践。
高光谱摄像机,即能够在各种波长中捕获图像的传感器,最近已添加到可用于植物遗传学和繁殖应用的表型工具领域中。据报道,植物檐篷的高光谱特征与植物营养状况有关(Cilia等,2014; Mahajan等,2016),与植物生长相关的特征(Kaur等,2015; Yang&Chen,2004; Yang&Chen,2004),植物生物量(Jia et al。 Thomas等,2017),Geno-type Intication(Chivasa等,2019),叶水含量(Ge等,2016)和土壤微生物群落组成(Carvalho等,2016)。特别是,高通知数据驱动的数据驱动的复杂性状预测,也称为现象预测,是一个积极的和连续表型的积极研究主题(Cuevas等,2019; Edlich-Muth et al。,2016; Krause等,2016; Krause等,2019; Krause et al。,2019; Rincent et and and and and and and an an an an an an an an an an an an an an an an。现象性预测有望捕获植物的分子组成,例如生物化学或生理信号(内型),影响基因组预测可能无法直接解释的表型(Rincent等人,2018年)。高度反射率数据可用于评估植物生长或应力相关的表型,以响应PGPB接种。
