目前,纳米 / 微粒子被广泛应用于各个领域 [1-3]。银粒子由于其独特的光学-物理-化学性质,是各类粒子中最为重要的材料之一。该材料已被提议用于各个领域,如生物传感器、诊断、成像、催化剂、太阳能电池和抗菌 [4-14]。特别是,与尺寸相关的独特等离子体特性使粒子在生物医学应用方面表现出色 [15-20]。鉴于银材料的重要性,第一版《银纳米 / 微粒子:改性与应用》于去年成功出版,其中收录了 10 篇优秀论文 [21-30]。该特刊 2.0 版还提供了详细介绍银材料合成、改性和应用的原创贡献。其中收录了 11 篇优秀论文,描述了银纳米 / 微粒子领域最新进展的示例。由于银纳米粒子具有非破坏性、快速性、分子指纹识别和超灵敏及光稳定性等特性,其等离子体特性已被应用于基于表面增强拉曼散射 (SERS) 的有害物质检测 [31]。由于食用海鲜相关的组胺中毒会导致疾病,Kim-Hung 等人报道了使用等离子体银-金纳米结构通过 SERS 轻松检测组胺 [32]。他们使用该纳米结构通过 SERS 成功检测出组胺(LOD 为 3.698 ppm)。Pham 等人报道了使用含有纳米结构的内部标准基于 SERS 对农药进行灵敏和定量检测 [33]。在研究中,4-巯基苯甲酸标记的银-金纳米粒子用于灵敏和定量的福美双检测,检测范围为 240 至 2400 ppb,检测限为 72 ppb。银纳米粒子作为抗菌剂具有巨大潜力。Nakamura 等人综述了银纳米粒子的合成及其在预防感染方面的应用[34]。他们特别关注了环境友好型合成和抑制医护人员的感染。Nakamura 等人报道,紫外线照射可通过羟基自由基增强银纳米粒子的杀菌活性[35]。他们表明,紫外线照射银纳米粒子可有效增强其杀菌活性,这是因为银纳米粒子经紫外线照射后会产生活性羟基自由基,而这种活性羟基自由基具有抗菌活性。紫外线照射可快速增强银纳米粒子中活性羟基自由基的产生。银纳米线具有优异的导电性能,在热能和电子应用方面得到了深入研究。Mori 等人评估了银纳米线及其与碳纳米管复合材料在生物医学应用中的抗菌和细胞毒性特性[36]。Li 等人报道了一种简单、可持续且环境友好的方法,即通过自牺牲还原在竹子上装饰的介孔 TiO 2 薄膜中原位制造银纳米粒子,以合成具有高效抗真菌活性的纳米复合材料[37]。复合薄膜赋予的竹子对绿色木霉和柑橘假单胞菌表现出优异的抗真菌活性。由于复合薄膜具有高生物相容性、低成本和易于制造的特点,因此在竹子上原位制造银纳米粒子是一种可行的方法。
考试等级 名称 命令简称 ABF1 JULCA DANIEL AN NOSC FARMINGDALE NY ABF2 GONZALEZ ARIEL NOSC HIALEAH FL ABF2 RAMIREZ AARON M NOSC SACRAMENTO CA ABF3 KOVACH IAN A NOSC AUSTIN TX ABF3 MCSWEENEY ROY W NRC LEMOORE CA ABF3 RUNTREE JARED NOSC NORTH查尔斯顿 SC ABF3 斯蒂尔 阿曼达 LA NOSC 奥兰多 佛罗里达州 ABF3 史蒂文斯·斯宾塞 纳夫瑞森 班戈 ME ABH1 科布·达里尔·拉姆 NOSC 圣地亚哥 CA ABH1 DELAROSA BEO BR NOSC 萨克拉门托 CA ABH1 摩根·杰奎利 NRC 杰克逊维尔 佛罗里达州 ABH2 卡班·哈维尔 AB NOSC 圣地亚哥 CA ABH2 GEHRIG WILLIAM 机载计算机 玛丽埃塔 乔治亚州 ABH2 HALSELL CHERISH 机载计算机 圣地亚哥 加利福尼亚州 ABH2 JACKSON COREY L 机载计算机 印第安纳波利斯 印第安纳州 ABH2 JAMES MEKA Y 机载计算机 FT DIX 新泽西州 ABH2 MORALESGARCIA M NAVRESCEN 圣地亚哥 加利福尼亚州 ABH2 PERRY DOMINIQUE 海军后备司令部 杰克逊维尔 佛罗里达州 ABH2 SMYTH MICHAEL T 机载计算机 哥伦布 俄亥俄州 ABH2 STUART MICHAEL 机载计算机 麦克迪尔空军基地 佛罗里达州 ABH2 WILEY KAYLAH 马萨诸塞州 机载计算机 沃斯堡 德克萨斯州 ABH3 CULBRETH ERICA 机载计算机 弗吉尼亚海滩 弗吉尼亚州 ABH3 MCCANTS NICHOLA 机载计算机 弗吉尼亚海滩 弗吉尼亚州 ABH3 ROBISON STEWART 机载计算机 休斯顿 德克萨斯州 ABH3 SANTOS JUSTINER 机载计算机 什里夫波特 路易斯安那州 AC1 BEITER ALEC JOS 机载计算机 路易斯维尔 肯塔基州 AC2 DRESSER ETHAN M 机载计算机 小石城 阿肯色州 AC2 JAMES BRITTNEY 机载计算机 奥克港 华盛顿州 AD1 AGOSTO NORBERTO VR-53 安德鲁斯马里兰州联合基地 AD1 AGUILAR MARIO A VR 59 沃斯堡 德克萨斯州 AD1 ALDRIDGE ALANA VFC 12 弗吉尼亚海滩 弗吉尼亚州 AD1 BINDI SEAN JACO 机载计算机 格伦代尔 亚利桑那州 AD1 BLAKEMAN PATRIC 机载计算机 弗吉尼亚海滩 弗吉尼亚州 AD1 CRUZ MARIA HAHN HELMARSTRIKERON SIX ZERO AD1 DIAZ MICHELLE VR 55 POINT MUGU 加利福尼亚州 AD1 FOSTER BRUCE AN VR-53 安德鲁斯马里兰州联合基地 AD1 GARNER KRISTA A 机载作战中心 圣地亚哥 CA AD1 GORDON JASON JE 机载作战中心 弗吉尼亚海滩 VA AD1 GREEN ALLEN FRA HELSEACOMBATRON EIGHT FIVE AD1 GRONAUYOUNG ELI 机载作战中心 堪萨斯城 MO AD1 LANG CHRISTOPHE VR-53 安德鲁斯马里兰联合基地 AD1 MAYHAN CHRISTOP VR-53 安德鲁斯马里兰联合基地 AD1 MUSIC KIRBI KEI VR 61 橡树港 WA AD1 NWAJAGU ERNEST VR 57 圣地亚哥 CA AD1 PETREA GABRIELA 机载作战中心 休斯顿 TX AD1 PHAM PETER G VR 57 圣地亚哥 CA
随着技术、算法、互联网、互联互通和大数据存储的加速发展,当代商业组织继续拥抱数字化转型 (DT)(Foerster-Metz、Marquardt、Golowko、Kompalla 和 Hell,2018 年;Hanelta、Bohnsack、Marzc 和 Maranteb,2021 年)。数字技术的广泛采用已在组织中引发了广泛的转型,预计这将影响组织的内部运营和流程(Kretschmer 和 Khashabi,2020 年;Magistretti、Pham 和 Dell'Era,2021 年)。尤其是,组织认为数字化将帮助他们从根本上提高组织资源、人员、文化、决策(Devonport,2018 年)和内部教育定制培训(Foerster-Metz 等人,2018 年)的效率和效力,从而获得竞争优势。鉴于 DT 是多维的(Appio、Frattini、Petruzzelli 和 Neirotti,2021 年;Zangiacomi、Pessot、Fornasiero、Bertetti 和 Sacco,2020 年),研究人员对其的定义各不相同(参见 Verhoef、Broekhuizen、Bart、Bhattacharya、Dong、Fabian 和 Haenlein,2021 年;Vial,2019 年)。事实上,Warner 和 Wager (2019) 认为,DT 缺乏关于其确切含义和含义的共同共识 (Wessel、Baiyere、Ologeanu-Taddei、Cha 和 Blegind-Jensen,2021)。然而,人们一致认为,DT 可以被描述为新数字技术与组织结构的新兴融合,这表明需要转变传统的商业模式 (Reier Forradellas 和 Garay Gallastegui,2021)。尤其是,Tang (2021) 认为,DT 受到社交媒体、移动性、物联网 (IoT)、网络安全、大数据和分析、云计算、机器人、自动化、人工智能 (AI,包括机器学习) 等技术趋势的驱动。这些技术趋势为企业提供了全面数字化、转型和发展其组织的能力,涵盖增长和运营改进,并与组织战略更新相关(Kretschmar & Khashabi,2020)。在此背景下,本期(27.5)中的论文集探讨了 DT、机器人、人工智能和创新之间的交集。第一篇论文来自新兴经济体,正面解决了 DT 问题。该研究采用概念方法,重点关注利益相关者对实施数字化过程的投入以及可持续发展目标 4 和 9 等背景因素。这些目标主要针对各级教育的发展、产业合作和改进。在这篇论文“数字化转型:实现尼日利亚可持续发展目标 4 和 9 的概念框架”中,作者 Ufua、Emielu、Olujobi、Lakhani、Borishade、Ibidunni 和 Osabuohien 探讨了数字化转型在实现联合国可持续发展目标 (SDG) 方面的潜力,重点关注尼日利亚的可持续发展目标 4 和 9。文献综述表明,数字化转型有可能提高可持续发展目标 4 和 9 的实现,但这取决于利益相关者的承诺水平和电子政务绩效。作者建议采用多学科方法,通过有效的利益相关者参与和透明的流程,对尼日利亚的可持续发展目标 4 和 9 进行面向发展的数字化转型干预
随着技术、算法、互联网、互联互通和大数据存储的加速发展,当代商业组织继续拥抱数字化转型 (DT)(Foerster-Metz、Marquardt、Golowko、Kompalla 和 Hell,2018 年;Hanelta、Bohnsack、Marzc 和 Maranteb,2021 年)。数字技术的广泛采用已在组织中引发了广泛的转型,预计这将影响组织的内部运营和流程(Kretschmer 和 Khashabi,2020 年;Magistretti、Pham 和 Dell'Era,2021 年)。尤其是,组织认为数字化将帮助他们从根本上提高组织资源、人员、文化、决策(Devonport,2018 年)和内部教育定制培训(Foerster-Metz 等人,2018 年)的效率和效力,从而获得竞争优势。鉴于 DT 是多维的(Appio、Frattini、Petruzzelli 和 Neirotti,2021 年;Zangiacomi、Pessot、Fornasiero、Bertetti 和 Sacco,2020 年),研究人员对其的定义各不相同(参见 Verhoef、Broekhuizen、Bart、Bhattacharya、Dong、Fabian 和 Haenlein,2021 年;Vial,2019 年)。事实上,Warner 和 Wager (2019) 认为,DT 缺乏关于其确切含义和含义的共同共识 (Wessel、Baiyere、Ologeanu-Taddei、Cha 和 Blegind-Jensen,2021)。然而,人们一致认为,DT 可以被描述为新数字技术与组织结构的新兴融合,这表明需要转变传统的商业模式 (Reier Forradellas 和 Garay Gallastegui,2021)。尤其是,Tang (2021) 认为,DT 受到社交媒体、移动性、物联网 (IoT)、网络安全、大数据和分析、云计算、机器人、自动化、人工智能 (AI,包括机器学习) 等技术趋势的驱动。这些技术趋势为企业提供了全面数字化、转型和发展其组织的能力,涵盖增长和运营改进,并与组织战略更新相关(Kretschmar & Khashabi,2020)。在此背景下,本期(27.5)中的论文集探讨了 DT、机器人、人工智能和创新之间的交集。第一篇论文来自新兴经济体,正面解决了 DT 问题。该研究采用概念方法,重点关注利益相关者对实施数字化过程的投入以及可持续发展目标 4 和 9 等背景因素。这些目标主要针对各级教育的发展、产业合作和改进。在这篇论文“数字化转型:实现尼日利亚可持续发展目标 4 和 9 的概念框架”中,作者 Ufua、Emielu、Olujobi、Lakhani、Borishade、Ibidunni 和 Osabuohien 探讨了数字化转型在实现联合国可持续发展目标 (SDG) 方面的潜力,重点关注尼日利亚的可持续发展目标 4 和 9。文献综述表明,数字化转型有可能提高可持续发展目标 4 和 9 的实现,但这取决于利益相关者的承诺水平和电子政务绩效。作者建议采用多学科方法,通过有效的利益相关者参与和透明的流程,对尼日利亚的可持续发展目标 4 和 9 进行面向发展的数字化转型干预
标题:无标记代谢成像增强嵌合抗原 1 受体 T 细胞治疗的疗效 2 3 作者: Dan L. Pham 1,2†、Daniel Cappabianca 1,3†、Matthew H. Forsberg 4、Cole Weaver 1,2、4 Katherine P. Mueller 5、Anna Tommasi 1,3、Jolanta Vidugiriene 6、Anthony Lauer 6、Kayla Sylvester 6、5 Madison Bugel 1,3、Christian M. Capitini 4,7、Krishanu Saha 1,3*、Melissa C. Skala 1,2* 6 7 附属机构: 8 1 威斯康星大学麦迪逊分校生物医学工程系;美国威斯康星州麦迪逊 9。 10 2 莫格里奇研究所;美国威斯康星州麦迪逊。 11 3 威斯康星大学麦迪逊分校威斯康星发现研究所;美国威斯康星州麦迪逊 12 4 威斯康星大学医学与公共卫生学院儿科系;13 美国威斯康星州麦迪逊。 14 5 宾夕法尼亚大学佩雷尔曼医学院肿瘤学部儿科系;15 美国宾夕法尼亚州费城。 16 6 Promega 公司;16 威斯康星州菲奇堡。 17 7 威斯康星大学麦迪逊分校威斯康星大学卡博内癌症中心;17 美国威斯康星州麦迪逊。 18 20 † 这些作者对本文贡献相同 21 * 通讯作者:ksaha@wisc.edu ,mcskala@wisc.edu 22 23 摘要:24 25 嵌合抗原受体 (CAR) T 细胞疗法治疗实体瘤不仅因为免疫抑制肿瘤微环境具有挑战性,还因为其制造过程复杂且难以监控。制造直接影响 CAR T 细胞的产量、表型和代谢,这些与体内效力和持久性相关。特别是,尽管代谢适应性是一项关键的质量属性,但 T 细胞代谢需求在整个制造过程中如何变化仍未得到探索。在这里,我们使用光学代谢成像 (OMI) 解决了这一限制,这是一种基于自发荧光代谢辅酶 NAD(P)H 和 FAD 评估单细胞代谢的非侵入性、无标记方法。使用 OMI,我们确定了培养基组成相对于抗体刺激和/或细胞因子的选择对抗 GD2 CAR T 细胞代谢、活化强度和动力学以及表型的主要影响。我们证明 OMI 参数可以指示病毒转导和基于电穿孔的 CRISPR/Cas9 的细胞周期阶段和最佳基因转移条件。值得注意的是,在 37 无病毒 CRISPR 编辑的抗 GD2 CAR T 细胞模型中,OMI 测量可以准确 38 预测氧化代谢表型,从而产生更高的体内抗神经母细胞瘤效力。我们的数据支持 OMI 作为一种强大、灵敏的分析工具的潜力,可以识别 40 最佳制造条件并在整个制造过程中监测细胞代谢,从而提高 41 CAR T 细胞产量和代谢适应性。42 43
通过人工智能(AI)自动化已被认为是医疗保健和相关研究中最快发展的领域。 AI有可能在结构化的提示/指令及其应用到医疗保健方面分析大量不同的数据和过程异质信息,从促进早期诊断和监测,到提高患者的访问,质量和效率护理率,越来越多地记录在案(Alami等人,2020年)。 迄今为止,健康经济学和成果研究(HEOR)和研究方面的广泛AI应用程序(包括卫生技术评估[HTA])未能获得显着的牵引力。 HTA机构在英格兰(National of Health and Care Excellence [NICE])最近发表的AI立场声明,该机构围绕着使用AI方法来建立了技术提交的AI方法的原则,可能会改变现状和影响世界各地的其他HTA身体(尼斯,2024年)。 机器学习(ML)在药物ePidemiology和HEOR中的应用以前已用于推进队列或特征分析(混杂因素调整,因果推断),并预测对药物的临床反应或不良反应(Padula等,20222; Wyss; Wyss; Wyss et et an。,2022222)。 最近,最明显的是,在Covid-19大流行期间和之后,HTA机构在如何处理更高量的证据效率上有效,严格地平行于需要考虑更大的证据基础并在短暂的通知下提供决策(Hair等,2021; Daniels等,2015年)。已被认为是医疗保健和相关研究中最快发展的领域。AI有可能在结构化的提示/指令及其应用到医疗保健方面分析大量不同的数据和过程异质信息,从促进早期诊断和监测,到提高患者的访问,质量和效率护理率,越来越多地记录在案(Alami等人,2020年)。迄今为止,健康经济学和成果研究(HEOR)和研究方面的广泛AI应用程序(包括卫生技术评估[HTA])未能获得显着的牵引力。HTA机构在英格兰(National of Health and Care Excellence [NICE])最近发表的AI立场声明,该机构围绕着使用AI方法来建立了技术提交的AI方法的原则,可能会改变现状和影响世界各地的其他HTA身体(尼斯,2024年)。机器学习(ML)在药物ePidemiology和HEOR中的应用以前已用于推进队列或特征分析(混杂因素调整,因果推断),并预测对药物的临床反应或不良反应(Padula等,20222; Wyss; Wyss; Wyss et et an。,2022222)。最近,最明显的是,在Covid-19大流行期间和之后,HTA机构在如何处理更高量的证据效率上有效,严格地平行于需要考虑更大的证据基础并在短暂的通知下提供决策(Hair等,2021; Daniels等,2015年)。在系统文献评论(SLR)中同样如此,这是医疗保健决策中基于证据的医学和决策的基石,旨在以可重复和无偏见的方式识别和综合目标人群或疾病问题的数据和/或信息。SLR是劳动密集型且昂贵的(Michelson和Reuter,2019年),经常需要几个月的时间才能完成,并且需要一组研究人员的努力和培训(Bashir等,2018; Shojania等,2007)。2017年使用来自Prospero注册表的数据证实了进行系统评价所需的时间和人员的分析(Borah等,2017),经常需要6个月的评论,并且在更复杂的主题中,完成了几年的完成(Featherstone等,2015年; Ganann等,2015; Ganann et al。,2010; Khangangura; Khangura et al。)。在2018年的案例研究中,完成系统审查的平均时间为66周,小时为881个小时(Pham等,2018)。然而,考虑到决策者对探索更复杂的方法的需求增加,以增加对数据的信任,并为他们的决策者(例如偏见量化方法,替代分析和长期的生存外推)提供可靠的证据,它仍然是所有利益相关者的斗争,而不是涉及所有利益的人(培训)的斗争(决策者,制药员,研究人员,研究人员,研究人员,研究人员,研究人员)的斗争,这些斗争是如何的,研究人员,研究人员,研究人员的范围)。确保产生的证据的同时,更严格的方法是最新的,并且发现及时,相关且准确地进行决策(Sarri等,2023)。因此,引入了生活(定期更新)系统评价(LSR)的概念,作为一种新型的证据识别和综合方法,旨在不断使用严格的方法来不断更新评论,以
[1] Lianglu Pan,Shaanan Cohney,Toby Murray和Van-Thuan Pham。2024。通过变质模糊检测到Web服务器响应中的数据ex-2024姿势。第46 ACM/IEEE国际软件工程会议(ICSE),pp。1-14。[2] Liam Saliba,Eduardo Oliveira,Shaanan Cohney和Qi Jianzhong。2024。以风格学习:通过更好的自动反馈来改善学生代码风格。第55届ACM计算机科学教育技术研讨会(SIGCSE),pp。1-7。[3]传真Wang,Shaanan Cohney,Riad Wahby和Joseph Bonneau。2024a。notry:具有追溯性avowal的可拒绝消息传递。隐私增强技术研讨会(宠物),pp。1-17。[4] Shaanan Cohney和Marc Cheong。2023。covid down下:澳大利亚大流行应用程序在哪里走了2023年错误?2023 IEEE工程,科学和技术道德国际座谈会(伦理)。ieee,pp。1–8。[5] Ben Burgess,Avi Ginsberg,Edward W Felten和Shaanan Cohney。2022。观看观察者:远程Proctoring软件中的偏见和2022漏洞。第31届USENIX安全研讨会(USENIX Security 22)。[6] Shaanan Cohney,Ross Teixeira,Anne Kohlbrenner,Arvind Narayanan,Mihir Kshirsagar,Yan Shvartzsh-2021 Neider和Madelyn Sanfilippo。2021。虚拟教室和真正的危害:美国远程学习大学。关于可用隐私和安全性的第十七座研讨会(汤2021),pp。653–674。[7] Shaanan Cohney,Andrew Kwong,Shahar Paz,Daniel Genkin,Nadia Heninger,Eyal Ronen和Yuval 2020 Yarom。2020。伪黑天鹅:对CTR_DRBG的缓存攻击。2020 IEEE安全与隐私研讨会(SP)。ieee,pp。1241–1258。[8] Shaanan Cohney,Matthew D Green和Nadia Heninger。2018。针对2018年传统RNG实施的实际国家恢复攻击。2018 ACM SIGSAC计算机和通信安全会议的会议记录,pp。265–280。[9] Nimrod Aviram, Sebastian Schinzel, Juraj Somorovsky, Nadia Heninger, Maik Dankel, Jens Steube, Luke 2016 Valenta, David Adrian, J Alex Halderman, Viktor Dukhovni, Emilia Käsper, Shaanan Cohney , Susanne Engels, Christof Paar and Yuval Shavitt.2016。{drown}:使用{sslv2}打破{tls}。第25届USENIX安全研讨会(USENIX Security 16),pp。689–706。[10] Stephen Checkoway,Jacob Maskiewicz,Christina Garman,Joshua Fried,Shaanan Cohney,Matthew Green,Nadia Heninger,Ralf-Philipp Weinmann,Eric Rescorla和Hovav Shacham。2016。对杜松双EC事件的系统分析。2016 ACM Sigsac计算机和通信安全会议的会议记录,pp。468–479。[11] Luke Valenta,Shaanan Cohney,Alex Liao,Joshua Fried,Satya Bodduluri和Nadia Heninger。2016。作为服务。 国际金融密码和数据安全会议。 Springer,pp。 321–338。 2016。 1-15。作为服务。国际金融密码和数据安全会议。Springer,pp。321–338。2016。1-15。[12] Luke Valenta,David Adrian,Antonio Sanso,Shaanan Cohney,Joshua Fried,Marcella Hastings,J Alex Halderman和Nadia Heninger。测量针对Diffie-Hellman的小型亚组攻击。ndss,pp。
增强器AAV工具箱用于访问和扰动纹状体细胞类型和循环作者Avery C. Hunker 1,#,Morgan E. Wirthlin 1,#,Gursajan Gill 2,Nelson J. Johansen 1,Marcus Hooper 1,Marcus Hooper 1,Marcus Hooper 1,Marcus hooper 1,Marcus hooper 1,Marcus wivoria Omstead 1,Naz taskin 1,Naz Taskin 1,Natalie Vargquel 2 Gore 1,Yoav Ben-Simon 1,Yeme Bishaw 1,Ximena Opitz-Araya 1,Refugio A. Martinez 1,Sharon Way 1,Bargavi Thyagarajan 1,M。NathalyLerma 1,Will Laird 1,Will Laird 1,Otto Sven 1,Otto Sven 1,Raymond E.A.,Raymond E.A.最佳的课堂载体被策划,用于访问包括中刺神经元(MSN),直接和间接途径MSN以及SST-ChoDL,PVALB-PTHLH和胆碱能中的杂种途径,包括中型棘神经元(MSN),直接和间接途径。特异性通过多种分子验证模式,三种不同的病毒输送途径以及不同的转基因货物评估。重要的是,我们提供详细信息
5. Han SS, Park GH, Lim W 等人。深度神经网络在甲癣诊断方面表现出与皮肤科医生相当甚至更好的表现:通过基于区域的卷积深度神经网络自动构建甲癣数据集。PLoS ONE。2018;13:e0191493。6. Seite S、Khammari A、Benzaquen M、Moyal D、Dreno B。一种用于从智能手机照片中对痤疮进行分级的人工智能算法的开发及其准确性。Exp Dermatol。2019;28:1252-1257。doi:10.1111/exd.14022 7. Min S、Kong HJ、Yoon C、Kim HC、Suh DH。使用数字图像处理开发和评估自动痤疮病变检测程序。皮肤研究技术。 2013;19:e423-e432。doi:10.1111/j.1600-0846.2012.00660.x 8. Gustafson E、Pacheco J、Wehbe F、Silverberg J、Thompson W。一种从电子健康记录中识别成人特应性皮炎的机器学习算法。IEEE Int Conf Healthc Inform。2017;83-90。doi:10.1109/ICHI.2017.31 9. De Guzman LCD、Maglaque RPC、Torres VMB、Zapido SPA、Cordel MO。用于湿疹皮肤病变检测的多模型、多层次人工神经网络的设计和评估。2015 年第三届人工智能、建模和仿真国际会议(AIMS)。2015:42-7。 10. Guimarães P、Batista A、Zieger M、Kaatz M、Koenig K。多光子断层扫描中的人工智能:特应性皮炎诊断。Sci Rep。2020;10:7968。11. Wu H、Yin H、Chen H 等人。一种基于深度学习的图像自动诊断炎症性皮肤病的方法。Ann Transl Med。2020;8(9):581。doi:10.21037/atm.2020.04.39 12. Meskó B、Hetényi G、Győrffy Z。人工智能能否解决医疗保健领域的人力资源危机?BMC Health Serv Res。2018;18:545。 doi:10.1186/s12913-018-3359-4 13. Bullock, J.、Luccioni, A.、Pham, KH、Lam, CSN、Luengo-Oroz, M. (2020)。绘制人工智能应对 COVID-19 应用前景图。ArXiv。2020 年。https://arxiv.org/abs/2003.11336v1 14. Hollister M。人工智能可以帮助应对 COVID-19 危机 - 但正确的人力投入是关键。世界经济论坛,3 月 30 日。Taulli, T. (2020)。正在抗击 COVID-19 大流行的 AI(人工智能)公司。福布斯,2020 年 3 月 28 日。 15. Genovese G、Moltrasio C、Berti E、Marzano AV。与 COVID-19 相关的皮肤表现:当前知识和未来展望。皮肤病学。2021;237:1-12。16. Freeman EE、McMahon DE、Fitzgerald ME 等人。美国皮肤病学会 COVID-19 登记处:COVID-19 时代的众包皮肤病学。美国皮肤病学杂志。2020;83(2):509-510。17. van Damme C、Berlingin E、Saussez S、Accaputo O。急性荨麻疹和发热是 COVID-19 感染的首发表现。欧洲皮肤病学杂志。2020;34(7):e300-e301。18. Galván Casas C、Català A、Carretero Hernández G 等人。 COVID-19 皮肤表现的分类:西班牙一项涉及 375 例病例的快速前瞻性全国性共识研究。Br J Dermatol。2020;183(1):71-77。19. Freeman EE、McMahon DE、Lipoff JB 等人。与 COVID-19 相关的冻疮样皮肤病变:来自 8 个国家的 318 名患者的病例系列。J Am Acad Dermatol。2020;83(2):486-492。20. Young S、Fernandez AP。COVID-19 的皮肤表现。Cleve Clin J Med。2020。doi:10.3949/ccjm.87a.ccc031。提前在线发表。21. Mathur J、Chouhan V、Pangti R、Kumar S、Gupta S。用于识别 COVID-19 皮肤表现的卷积神经网络架构。皮肤病学治疗。2021;34(2):e14902。doi:10.1111/dth.14902 22. Christopher JJ、Nehemiah HK、Arputharaj K、Moses GL。用于诊断荨麻疹的计算机辅助医疗决策系统。MDM 政策实践。2016;1(1):2381468316677752。doi:10.1177/2381468316677752
爆炸武器创伤护理集体(Extracct):野生,切兰(Cheran,Willing,Loupforest,Kasack,Kasack,Kasack,Gargan,Stewart,Stewart,Stestewart,International Blast Inflast Ingains and International Blast Ingault Research Network and Page 28]1。Wild,Hannah,Christelle Loupforest,Loren Persi,Elke Hottentot,Sebastian Kasack,Firoz Alizada,International Blast Inflast Husport Research Network和Barclay T. Stewart。“矿山行动创伤护理合作:加强人道主义矿山行动与对爆炸性军械平民伤亡的紧急卫生响应之间的协调”,《常规武器销毁杂志》 28,第1期。1(2024),https://shorturl.at/ye4k3。2。“ 04.10矿山行动术语,定义和缩写”,IMas,https://shorturl.at/8op9k。3。按照国际矿山行动标准(IMAS)4.10使用“爆炸性军械”。“爆炸武器”一词用于指定所有其他形式的爆炸性机制,包括空气和地面发射的弹药,无论是否在此定义中正式涵盖了它们。例如,非毒性激活的即兴爆炸装置(IEDS)不在抗人体矿山禁令公约(APMBC)所包含的即兴矿山的技术定义之外。4。Wild,Hannah,Barclay T. Stewart,Christopher Leboa,Christopher D. Stave和Sherry M. Wren。6(2020):1863–1873,https://shorturl.at/tiaor。5。6。Pizzino,Stacey,Michael Waller,Vivienne Tippett和Jo Durham。“当代武装冲突中平民和当地战斗人员所遭受的伤害流行病学:对人道主义行为者共同创伤注册中的呼吁”,《世界手术杂志》,第44期,第44期。“地雷监视器2023”,《禁止地雷的国际运动》,2023年,https://shorturl.at/ub93a。“地雷和爆炸性危害的死亡率:全球流行病学分析的发现”,院前和灾难医学38,第1期。S1(2023):S191 – S191,https://shorturl.at/lkqzj。7。Ritenour,Amber E.,Lorne H. Blackbourne,Joseph F. Kelly,Daniel F. McLaughlin,Lisa A. Pearse,John B. Holcomb和Charles E. Wade。 “美国军事海外军事官方应急行动的发病率:一项回顾性研究”,《手术年鉴》 251,第1期。 6(2010):1140–1144,https://shorturl.at/8epza。 8。 Nunziato,Carl A.,Christopher J. Riley和Anthony E. Johnson。 “国家创伤数据库中的平民爆炸损伤有多普遍,相关伤害的最常见机制和特征是什么,”临床骨科及相关研究479,第479页。 4(2021):683–691,https://shorturl.at/4scq7。 9。 Okeeffe,Jennifer,Larissa Vernier,Vanessa Cramond,Shazeer Majeed,Antonio Isidro Carrion Martin,Maartje Hoetjes和Mohana Amirtharajah。 “叙利亚Raqqa的爆炸受伤:来自无国界医生的分心医院的观察结果”,《冲突与健康》 13,28(2019):683–691,https://pubmed.ncbi.ncbi.nlm.nlm.nih.gov/31249610/。 10。 Edwards,Mary J.,Michael Lustik,Martin R. Eichelberger,Eric Elster,Kenneth Azarow和Christopher Coppola。Ritenour,Amber E.,Lorne H. Blackbourne,Joseph F. Kelly,Daniel F. McLaughlin,Lisa A. Pearse,John B. Holcomb和Charles E. Wade。“美国军事海外军事官方应急行动的发病率:一项回顾性研究”,《手术年鉴》 251,第1期。6(2010):1140–1144,https://shorturl.at/8epza。8。Nunziato,Carl A.,Christopher J. Riley和Anthony E. Johnson。 “国家创伤数据库中的平民爆炸损伤有多普遍,相关伤害的最常见机制和特征是什么,”临床骨科及相关研究479,第479页。 4(2021):683–691,https://shorturl.at/4scq7。 9。 Okeeffe,Jennifer,Larissa Vernier,Vanessa Cramond,Shazeer Majeed,Antonio Isidro Carrion Martin,Maartje Hoetjes和Mohana Amirtharajah。 “叙利亚Raqqa的爆炸受伤:来自无国界医生的分心医院的观察结果”,《冲突与健康》 13,28(2019):683–691,https://pubmed.ncbi.ncbi.nlm.nlm.nih.gov/31249610/。 10。 Edwards,Mary J.,Michael Lustik,Martin R. Eichelberger,Eric Elster,Kenneth Azarow和Christopher Coppola。Nunziato,Carl A.,Christopher J. Riley和Anthony E. Johnson。“国家创伤数据库中的平民爆炸损伤有多普遍,相关伤害的最常见机制和特征是什么,”临床骨科及相关研究479,第479页。4(2021):683–691,https://shorturl.at/4scq7。9。Okeeffe,Jennifer,Larissa Vernier,Vanessa Cramond,Shazeer Majeed,Antonio Isidro Carrion Martin,Maartje Hoetjes和Mohana Amirtharajah。“叙利亚Raqqa的爆炸受伤:来自无国界医生的分心医院的观察结果”,《冲突与健康》 13,28(2019):683–691,https://pubmed.ncbi.ncbi.nlm.nlm.nih.gov/31249610/。10。Edwards,Mary J.,Michael Lustik,Martin R. Eichelberger,Eric Elster,Kenneth Azarow和Christopher Coppola。Edwards,Mary J.,Michael Lustik,Martin R. Eichelberger,Eric Elster,Kenneth Azarow和Christopher Coppola。“儿童的爆炸损伤:来自阿富汗和伊拉克的分析,2002- 2010年”,《创伤和急性护理手术杂志》 73,第1期。5(2012):28,https://pubmed.ncbi.nlm.nih.gov/23117384/。 11。 Husum,Hans,Mads Gilbert,Torben Wisborg,Yang Van Heng和Mudhafar Murad。 “农村院前创伤系统改善了低收入国家的创伤结果:北伊拉克和柬埔寨的一项前瞻性研究”,《创伤和急性护理手术杂志》 54,第54期。 6(2003):1188,https://pubmed.ncbi.nlm.nih.gov/12813342/。 12。 Howard,Jeffrey T.等。 “使用战斗护理数据来评估阿富汗和伊拉克冲突期间的美国军事创伤制度,2001 - 2017年,” Jama Surgery 154,第1期。 7(2019),https://tinyurl.com/4b68h2v8。 13。 Blackbourne,Lorne H.等。 “军事医疗革命:部署医院并在路线护理中”,《创伤与急诊手术杂志》 73,第1期。 6(2012):S378 – S387,https://shorturl.at/nclb4。 14。 ”联合创伤系统,“创伤卓越卓越中心,https://jts.health.mil/。 15。 “临床过程指南”,IBRN,https://shorturl.at/y7sbf。 16。 Berwick,Donald,Autumn Downey,Elizabeth Cornett,军事创伤护理委员会的学习卫生系统及其转化为平民部门,卫生科学政策委员会,精选人群,健康和医学部以及国家科学学院的卫生委员会以及医学和医学。 17。 8(2022):1855–1869,https://pubmed.ncbi.nlm.nih.gov/35428920/。 18。5(2012):28,https://pubmed.ncbi.nlm.nih.gov/23117384/。11。Husum,Hans,Mads Gilbert,Torben Wisborg,Yang Van Heng和Mudhafar Murad。“农村院前创伤系统改善了低收入国家的创伤结果:北伊拉克和柬埔寨的一项前瞻性研究”,《创伤和急性护理手术杂志》 54,第54期。6(2003):1188,https://pubmed.ncbi.nlm.nih.gov/12813342/。12。Howard,Jeffrey T.等。 “使用战斗护理数据来评估阿富汗和伊拉克冲突期间的美国军事创伤制度,2001 - 2017年,” Jama Surgery 154,第1期。 7(2019),https://tinyurl.com/4b68h2v8。 13。 Blackbourne,Lorne H.等。 “军事医疗革命:部署医院并在路线护理中”,《创伤与急诊手术杂志》 73,第1期。 6(2012):S378 – S387,https://shorturl.at/nclb4。 14。 ”联合创伤系统,“创伤卓越卓越中心,https://jts.health.mil/。 15。 “临床过程指南”,IBRN,https://shorturl.at/y7sbf。 16。 Berwick,Donald,Autumn Downey,Elizabeth Cornett,军事创伤护理委员会的学习卫生系统及其转化为平民部门,卫生科学政策委员会,精选人群,健康和医学部以及国家科学学院的卫生委员会以及医学和医学。 17。 8(2022):1855–1869,https://pubmed.ncbi.nlm.nih.gov/35428920/。 18。Howard,Jeffrey T.等。“使用战斗护理数据来评估阿富汗和伊拉克冲突期间的美国军事创伤制度,2001 - 2017年,” Jama Surgery 154,第1期。7(2019),https://tinyurl.com/4b68h2v8。 13。 Blackbourne,Lorne H.等。 “军事医疗革命:部署医院并在路线护理中”,《创伤与急诊手术杂志》 73,第1期。 6(2012):S378 – S387,https://shorturl.at/nclb4。 14。 ”联合创伤系统,“创伤卓越卓越中心,https://jts.health.mil/。 15。 “临床过程指南”,IBRN,https://shorturl.at/y7sbf。 16。 Berwick,Donald,Autumn Downey,Elizabeth Cornett,军事创伤护理委员会的学习卫生系统及其转化为平民部门,卫生科学政策委员会,精选人群,健康和医学部以及国家科学学院的卫生委员会以及医学和医学。 17。 8(2022):1855–1869,https://pubmed.ncbi.nlm.nih.gov/35428920/。 18。7(2019),https://tinyurl.com/4b68h2v8。13。Blackbourne,Lorne H.等。“军事医疗革命:部署医院并在路线护理中”,《创伤与急诊手术杂志》 73,第1期。6(2012):S378 – S387,https://shorturl.at/nclb4。 14。 ”联合创伤系统,“创伤卓越卓越中心,https://jts.health.mil/。 15。 “临床过程指南”,IBRN,https://shorturl.at/y7sbf。 16。 Berwick,Donald,Autumn Downey,Elizabeth Cornett,军事创伤护理委员会的学习卫生系统及其转化为平民部门,卫生科学政策委员会,精选人群,健康和医学部以及国家科学学院的卫生委员会以及医学和医学。 17。 8(2022):1855–1869,https://pubmed.ncbi.nlm.nih.gov/35428920/。 18。6(2012):S378 – S387,https://shorturl.at/nclb4。14。”联合创伤系统,“创伤卓越卓越中心,https://jts.health.mil/。15。“临床过程指南”,IBRN,https://shorturl.at/y7sbf。16。Berwick,Donald,Autumn Downey,Elizabeth Cornett,军事创伤护理委员会的学习卫生系统及其转化为平民部门,卫生科学政策委员会,精选人群,健康和医学部以及国家科学学院的卫生委员会以及医学和医学。17。8(2022):1855–1869,https://pubmed.ncbi.nlm.nih.gov/35428920/。18。“国家创伤护理系统:整合军事和平民创伤系统以使受伤后的可预防死亡零,”美国国家科学学院,工程学,医学,2016年,https://shorturl.at/n7ym9。Owolabi,Eyitayo Omolara,Tamlyn Mac Quene,Johneliza Louw,Justine I Davies和Kathryn M. Chu。“低收入和中等收入国家手术护理中的远程医疗:范围审查”,《世界手术杂志》,第46期,第46期。Agoubi,Lauren L.,Nina M. Clark,Sarah Gibbs,Barclay T. Stewart,Xinyao G. Degrauw,Monica S. Vavilala,Frederick P. Rivara,Saman Arbabi和Tam N. Pham。 “对燃烧中心咨询和转移的分层远期途径的实施评估”,《创伤和急性护理手术杂志》 96,第1期。 3(2024):409–417,https://shorturl.at/xjwi5。 19。 意志,艾比加尔和汉娜·怀尔德(Hannah Wild)。 “我们询问了专家:确保在低资源冲突环境中手术电信的质量和安全性”,《世界手术杂志》,第48期,第1期。 8(2024):1808–1810,https://shorturl.at/25rks。 20。 Fitzgerald,Simon和Osaid Alser。 “我们开始了一个小组聊天,以帮助加沙的医生。 然后变得安静。Agoubi,Lauren L.,Nina M. Clark,Sarah Gibbs,Barclay T. Stewart,Xinyao G. Degrauw,Monica S. Vavilala,Frederick P. Rivara,Saman Arbabi和Tam N. Pham。“对燃烧中心咨询和转移的分层远期途径的实施评估”,《创伤和急性护理手术杂志》 96,第1期。3(2024):409–417,https://shorturl.at/xjwi5。19。意志,艾比加尔和汉娜·怀尔德(Hannah Wild)。“我们询问了专家:确保在低资源冲突环境中手术电信的质量和安全性”,《世界手术杂志》,第48期,第1期。8(2024):1808–1810,https://shorturl.at/25rks。20。Fitzgerald,Simon和Osaid Alser。“我们开始了一个小组聊天,以帮助加沙的医生。然后变得安静。