另外,使用 XOR 运算来屏蔽地址使您有机会执行额外的检查,以确保您对对象位置的假设是正确的。您应该将地址与一个值进行 XOR,该值将清除预期的存储体值但保持存储体偏移量不变。这样的值在存储体偏移量位置将为零,并指定对象应位于的存储体的位模式作为存储体值。因此,例如,如果假定操作数是存储体 1 中的对象,则在 PIC18 器件上将地址操作数与掩码 0x100 进行 XOR;如果它是存储体 3 中的操作数,则与 0x300 进行 XOR。在中档器件上,对于存储体 1 对象,与 0x80 进行 XOR;对于存储体 3 对象,与 0x180 进行 XOR。在低端器件上,对于存储体 1 对象,与 0x20 进行 XOR; 0x60 表示 bank 3 对象等。在下面的中档示例中,如果 src 不在 bank 1 中或 dst 不在 bank 2 中,将会产生错误。
摘要 — 我们介绍了一种 SOI 波导耦合锗光电二极管,它在 2 V 反向偏压下具有非常高的 OE -3 dB 带宽 ≥ 110 GHz。这种性能是通过一种新颖的结构实现的,即将锗夹在两个原位掺杂的硅区域之间。这种制造方法可以避免将离子注入锗,这无疑有利于带宽,因为少数载流子扩散效应受到强烈抑制。在 1550 nm (-2 V) 时实现了 >0.6 A/W 的响应度,而该器件的暗电流约为 300 nA (-2 V)。据我们所知,这是最先进的锗光电探测器,具有带宽、最先进的响应度以及中等暗电流。我们证明,这种新型光电二极管可以高产量制造。
// 配置字 1 CONFIG FEXTOSC=XT // 晶体振荡器 CONFIG RSTOSC=EXTOSC // EXTOSC 按照 FEXTOSC 位操作 CONFIG CLKOUTEN=OFF // CLKOUT 功能已禁用 CONFIG PR1WAY=ON // PRLOCK 位只能被清除和设置一次 CONFIG CSWEN=ON // 允许写入 NOSC 和 NDIV CONFIG FCMEN=ON // 故障安全时钟监视器已启用 // 配置字 2 CONFIG MCLRE=EXTMCLR // 如果 LVP=0,则 MCLR 引脚为 MCLR;如果 LVP=1,则 RE3 引脚功能为 MCLR CONFIG PWRTS=PWRT_OFF // PWRT 被禁用 CONFIG MVECEN=OFF // 向量表不用于确定中断优先级 CONFIG IVT1WAY=ON // IVTLOCK 位只能被清除和设置一次 CONFIG LPBOREN=OFF // ULPBOR 被禁用 CONFIG BOREN=SBORDIS // 欠压复位被启用,SBOREN 位被忽略 CONFIG BORV=VBOR_2P45 // 欠压复位电压 (VBOR) 设置为 2.45V CONFIG ZCD=OFF // ZCD 被禁用,通过设置 ZCDCON 的 ZCDSEN 位置位来启用 CONFIG PPS1WAY=ON // PPSLOCK 只能被清除/设置一次;清除/设置周期后 PPS 锁定 CONFIG STVREN=ON // 堆栈满/下溢将导致复位 CONFIG DEBUG=OFF // 后台调试器禁用 CONFIG XINST=OFF // 扩展指令集和索引寻址模式禁用 // 配置字 3 CONFIG WDTCPS=WDTCPS_31 // 分频器比率 1:65536 ; WDTPS 的软件控制 CONFIG WDTE=OFF // WDT 禁用; SWDTEN 被忽略 CONFIG WDTCWS=WDTCWS_7 // 窗口打开 100%;软件控制;不需要密钥访问 CONFIG WDTCCS=SC // 软件控制 // 配置字 4 CONFIG BBSIZE=BBSIZE_512 // 引导块大小为 512 个字 CONFIG BBEN=OFF // 引导块已禁用 CONFIG SAFEN=OFF // SAF 已禁用 CONFIG WRTAPP=OFF // 应用程序块不受写保护 CONFIG WRTB=OFF // 配置寄存器(300000-30000Bh)不受写保护 CONFIG WRTC=OFF // 引导块(000000-0007FFh)不受写保护 CONFIG WRTD=OFF // 数据 EEPROM 不受写保护 CONFIG WRTSAF=OFF // SAF 不受写保护 CONFIG LVP=ON // 低压编程已启用,MCLR 引脚,MCLRE 被忽略 // 配置字 5 CONFIG CP=OFF // PFM 和数据 EEPROM 代码保护已禁用
• 短和长工作距离设计 • 高耦合效率 • 高重复性和稳定性 • 在光栅耦合器锥度处,平面前波与光束近乎准直 • 可以实现超长工作距离 (WD) – 例如高达 >800 μ m • 在 Z 方向(光束传播方向)对垂直方向具有耐受性
目标和意义:HNEI 通过其电网系统技术高级研究团队 (Grid START) 正在根据合同向世界银行提供技术援助,用于其为太平洋岛国 (PIC) 项目开发可再生能源存储系统。该项目的目标是支持 11 个 PIC,即斐济、基里巴斯、马绍尔群岛共和国 (RMI)、密克罗尼西亚联邦 (FSM)、瑙鲁、帕劳、萨摩亚、所罗门群岛、汤加、图瓦卢和瓦努阿图,设计区域电池储能系统 (BESS) 政策框架和指南,并为每个 PIC 提供基础技术/商业评估,以支持私营部门参与 BESS 开发。背景:每个太平洋岛屿国家都设定了较高的电力行业可再生能源 (RE) 渗透率目标,但它们面临着在孤岛系统上整合可再生能源资源所固有的挑战,包括解决因严重依赖昂贵的进口化石燃料而导致的能源不安全和价格波动、对相关系统可靠性产生影响的电网运行挑战、以及气候变化对能源弹性造成的日益严重的威胁。能源存储系统,尤其是 BESS,将是实现高 RE 渗透率目标和缓解未来 PIC 能源挑战的关键。对于 PIC 孤岛电网,估算电网范围内的 BESS 需求(即总 BESS 容量 (MW) 和能量 (MWh))作为增加可变可再生能源 (VRE) 渗透率的函数,通常可分为增加 BESS 部署的四个连续阶段:1) ~0-20% VRE,用于电网服务和可再生能源支持;2) ~20-30% VRE,用于发电容量延期和/或化石燃料机组退役; 3)~30-70% VRE,用于通过能源转换缓解过量可再生能源削减;4)~70- 90+%,用于长期能源转换。
摘要:直接光学检测方法,例如表面等离子体共振成像 (SPRi) 和基于光子集成电路 (PIC) 的生物传感器,可实时快速无标记检测 COVID-19 抗体。每种技术,即 SPRi 和 PIC,在吞吐量、小型化、多路复用、系统集成和具有成本效益的大规模生产方面都有优点和缺点。然而,这两种技术在传感机制方面有相似之处,都可以用作护理点或护理点附近的高含量诊断,其中分析物不仅被量化,而且被全面表征。这很重要,因为最近的结果表明,不仅三种同型 IgM、IgG 和 IgA 的抗体浓度,而且结合强度(亲和力)都可以指示潜在的 COVID-19 严重程度。具有高滴度低亲和力抗体的 COVID-19 患者与疾病严重程度有关。从这个角度来看,我们提供了一些见解,说明如何有效结合 SPR 和 PIC 技术并相互补充,以全面监测 COVID-19 严重程度。这为立即做出治疗决定开辟了一条途径,使患者在感染的早期阶段得到治疗,从而大大降低病情发展为严重阶段的风险。
摘要:无标记直接光学生物传感器(如表面等离子体共振 (SPR) 光谱)已成为集中实验室生化分析的黄金标准。基于光子集成电路 (PIC) 的生物传感器基于相同的物理传感机制:衰减场传感。如果能够克服从研究实验室转移到工业应用的挑战,基于 PIC 的生物传感器可以在医疗保健中发挥重要作用,尤其是对于即时诊断。研究正处于这一门槛,这为卫生和环境领域的创新现场分析提供了巨大的机会。通过将创新的 PIC 技术与成熟的 SPR 光谱进行比较,可以更深入地了解它。在本文中,我们简要介绍了这两种技术,并揭示了它们的异同。此外,我们回顾了一些最新进展,并从表面功能化和传感器性能方面比较了这两种技术。
IST-SET-SET-198-RSY在国防和安全方面的量子技术,2023年10月3日至4日©Quside 2022,机密信息。不是用于分发。
制定白皮书和测试计划,用于定义 PIC 技术 (TID、DD、SEE) 中潜在的辐射诱发故障机制 完成 Freedom Photonics PIC TID 和 DD 测试 (使用 50 MeV 质子进行高通量测试) 与 Georgia Tech 合作完成集成硅波导重离子测试。计划测试 GT SiN 波导和分立硅光子器件 (MZM) 计划在商用分立和集成光子器件 (UCSB、NeoPhotonics 等) 调查中进行额外的 TID 和 DD 质子测试 使用 Lumerical 物理建模和贝叶斯分析来分析 PIC 辐射数据的趋势。