e x Cote s ummary the Art Silicon Photonics是光子综合电路(PICS)的有吸引力的技术,因为它直接建立在硅纳米电子世界的极端成熟基础上。因此,它以非常高的收率和低成本的方式打开了通向非常高级照片的路线。更准确地说,硅光子图片如今在200和300mm CMOS铸造厂的商业生产中,具有NM级别的精度和可重复性,从光子学的角度来看是前所未有的。基本技术利用了硅在绝缘子(SOI)晶圆中,其中硅氧化硅层的硅层上的硅层充当了波导的核心,该波导将芯片上的设备互连。或者,SOI晶片被硅晶片取代,用一堆氮化硅波导核心层包围,被氧化硅覆盖层包围。现在,这种氮化硅图片被认为是硅光子家族的组成部分。在此路线图的单独章节中描述了它们。因此,本章主要关注基于SOI的硅光子学,是硅光子学界的主要方式。值得注意的是,近年来,许多SOI PIC平台添加了第二个光子波引导层,是氮化硅层,从而结合了两种方法的最佳方法,并可以提高设计和增强性能的灵活性。
近年来,随着互联网数据流量的急剧增加,在数据中心实现高速低成本的光传输技术具有巨大的商业价值[1-5]。为了提高互联数据传输的速度,在单个硅芯片上集成半导体激光二极管、光调制器、多路复用器、波导、光电探测器等的 PIC 的构想应运而生[6-8]。此外,在硅平台上集成 PIC 或光电集成电路 (OEIC) 的硅光子学因具有低成本、大面积衬底的优势以及与先进制造和硅互补金属氧化物半导体 (CMOS) 制造技术的兼容性而引起了极大的兴趣[9]。与最先进的 InP 基 PIC [10-12] 相比,Si 基 PIC 被认为是另一种有前途的节能解决方案,它可以将收发器成本从目前每千兆比特每秒 (Gb/s) 输入/输出 (I/O) 带宽几美元降低到每 Gb/s 不到几美分 [13-15]。最近,尽管片外发光源具有高温性能和高发光效率的优势,但由于封装成本降低和光耦合效率提高,片上光源的重要性得到了强调 [16]。此外,片上光源具有在单个芯片上实现密集集成的潜力,并且在能效和可扩展性方面具有更好的性能。
摘要:可编程光子集成电路(图片)是光学科学和工程中越来越重要的平台。但是,当前可编程图片主要是通过减法制造技术形成的,该技术限制了设备的重构性,并使原型制作成本昂贵且耗时。可重写的PIC架构可以避免这些缺点,其中图片在单个图片帆布上反复编写和删除。我们通过选择性激光撰写一层宽带间隙相变材料(PCM)SB 2 S 3,并使用低成本的台式设置来演示这种可重写的PIC平台。我们以高达300 nm的分辨率显示任意图案,并编写介电辅助波导,低光损耗为0.0172 db/μm。我们设想,使用这个廉价的台式平台可以在同一芯片上编写,测试和擦除数千个图片设计,而无需使用光刻/蚀刻工具或纳米制造工具,从而降低了制造成本并提高可访问性。关键字:可重写的光子集成电路,相变材料,低损失,激光写作
引言研究和创新可以通过数字技术来提高循环且竞争激烈的欧洲制造业。数据互操作性和质量及其结构,真实性和完整性是剥削数据值的关键,尤其是在AI部署的背景下。量子计算,即使用量子力学现象来执行计算,这是一个可以为人和企业做出根本性变化的领域。R. P. Feynman [1]提出了使用量子力学进行计算的第一个建议之一。最流行的量子计算模型是基于量子位或量子的量子电路。光子积分电路(图片),也称为光学芯片,将多个(至少两个)光子函数整合到光学波长上的信息信号。选择光子学以接近量子计算有两个主要优点。首先是,据信随机噪声水平降低了几个数量级,即使是基于物质的方法的最小噪声。其次,为经典计算目的而努力追求图片,量子体系结构所需的核心组成部分已经在研究中。此外,照片已被证明不仅是CMOS兼容的,而且可以在CMOS制造技术和标准方面没有任何更改来构建它们[2,3]。在所有人中,硅光子学[4]由于其低光谱分散体和高折射率而容易整合复杂的光学系统。硅图片用于量子计算,可以通过线性光学量子电路和单个光子来实现。
ligentec为高科技行业的客户(例如量子计算,高级计算,通信,自动驾驶,空间和生物传感器)提供特定应用的光子集成电路(PIC)。ligentec的技术最初是在洛桑联邦技术学院(EPFL)开发的,已获得专利,并与CMO完全兼容。该技术允许比当今最先进的技术生产具有更好性能的图片。另外,可以集成活性组件以在片上启用更多功能。通过将低脂材料(例如玻璃与硅光子学的益处)结合起来,粘合剂解决了当今综合光子学的主要挑战,包括低损失和短生产周期。
摘要。光子综合电路(图片)吸引了人们对高数据速率通信和高性能计算的有希望的平台。对于图片,带有兼容材料,紧凑型足迹,高温和复杂功能的光子设备是必要的构件。设计优化为目标应用程序和要求实施此类设备至关重要。在这方面,逆设计方法(包括迭代优化和深度神经网络)与传统的基于基于仿真的试验和错误优化方法相比具有显着优势。我们概述了集成光子设备的逆设计的最新进度。呈现和讨论逆设计方法的原理和过程,然后摘要在不同集成光子材料平台中用于特定集成光子设备所采用的方法。最后,讨论了将来的应用程序和逆设计方法的制造约束的主题。
i。图片的特征是少量人群分布在广阔的地区。II。 需要更可比较的数据来了解国家之间的剥夺以及识别和监测区域趋势。 iii。 太平洋是一个具有重大性别不平等的地区。 iv。 图片中的数据剥夺阻碍了基于证据的政策设计。 v。公共访问数据是该地区面临的另一个挑战。 vi。 数据剥夺阻碍了跟踪随着时间的推移性别不平等的进度,并设计政策以解决它。 vii。 国家统计局(NSO)缺乏满足太平洋数据收集成本的资金。 VIII。 低统计能力是解决数据剥夺的主要挑战。 ix。 随着时间的推移,统计能力有所提高,但结果尚未得到持续。II。需要更可比较的数据来了解国家之间的剥夺以及识别和监测区域趋势。iii。太平洋是一个具有重大性别不平等的地区。iv。图片中的数据剥夺阻碍了基于证据的政策设计。v。公共访问数据是该地区面临的另一个挑战。 vi。 数据剥夺阻碍了跟踪随着时间的推移性别不平等的进度,并设计政策以解决它。 vii。 国家统计局(NSO)缺乏满足太平洋数据收集成本的资金。 VIII。 低统计能力是解决数据剥夺的主要挑战。 ix。 随着时间的推移,统计能力有所提高,但结果尚未得到持续。v。公共访问数据是该地区面临的另一个挑战。vi。数据剥夺阻碍了跟踪随着时间的推移性别不平等的进度,并设计政策以解决它。vii。国家统计局(NSO)缺乏满足太平洋数据收集成本的资金。VIII。 低统计能力是解决数据剥夺的主要挑战。 ix。 随着时间的推移,统计能力有所提高,但结果尚未得到持续。VIII。低统计能力是解决数据剥夺的主要挑战。ix。随着时间的推移,统计能力有所提高,但结果尚未得到持续。