Villanueva 电池储能系统 BESS Universal Power Solutions Inc.塔戈洛安,东米萨米斯省 X 20.000 2023 年 6 月 2024 年 4 月 因 COVID-19 疫情导致延误 Jasaan 电池储能系统 BESS Universal Power Solutions Inc. Jasaan,东米萨米斯省 X 20.000 2023 年 3 月 2023 年 10 月 因 COVID-19 疫情导致延误 Tagum 电池储能系统 BESS Universal Power Solutions Inc.塔古姆,北达沃省 XI 20,000 2023 年 7 月 2024 年 4 月 因新冠疫情导致延误 Aurora 电池储能系统 BESS Fort Pilar Energy, Inc. Brgy。 Cabilan, Aurora, Zamboanga del Sur IX 20.000 2024 2024 因 COVID-19 疫情导致延误 Tagoloan 电池储能系统第 2 阶段 BESS Universal Power Solutions Inc.塔戈洛安,东米萨米斯省 X 20.000 2025 年 3 月 2025 年 5 月 因 COVID-19 疫情导致延误 Placer 电池储能系统 BESS Universal Power Solutions Inc. Placer, Surigao del Norte XIII 20,000 2025 年 3 月 2025 年 5 月 因 COVID-19 疫情导致延误 Maramag 电池储能系统 BESS Universal Power Solutions Inc.马拉马格,布基农 X 20.000 2025 年 3 月 2025 年 5 月 因新冠疫情导致延误 三投斯将军市电池储能系统 BESS Universal Power Solutions Inc.三投斯将军市, 南哥打巴托省 XII 20,000 2025 年 3 月 2025 年 5 月 因新冠肺炎疫情造成延误
belda的Eugeni,1,2 Voland高中,1瓦伦蒂娜·特雷尔利(Valentina tremali),3个白色falone ,4,5 Solia Adriouch, Tiphaine le Roy , 11,12 Maria Carlota Dao,1 Promi Das,13 Soraya Fellahi,14,15 Sofia Forslund,16 Nathalie Galleron,17 Tue H Hansen,8 Bridget Holmes,18 Boyang Ji,18克里斯蒂安·刘易森(Christian Lewinter),《举止的路易丝》, BSøndertoft,8 Sothea Touch, Jean-Michel Oppert,7,26 Michael Stumvoll, 17,30让·丹尼尔·扎克(Jean-Daniel Zucker),1,6弗雷德里克·贝克(FredrikBäcked),3杰罗恩·拉斯(Jeroen Raes),4,5 carine 1.7
2024年3月7日,参议院教育,能源和环境委员会主席,米勒参议院办公室大楼Annapolis Maryland 21401 RE:信息证书 - 1082年 - 太阳能和能源存储法案 - 太阳能和国家采购主席Feldman and Commistion:Maryland Fellastication for Transporting(MDOT),参议员的信息是,参议员的委员起草,参议院第1082号法案将在自然资源部(DNR)电厂研究计划中创建公用事业规模的太阳能设计和选址咨询委员会。委员会必须就许多项目,包括挫折范围,筛查要求以及与太阳能相关的竞争目标,以及为在每个县开发太阳能生成站的发展模型政策,用于太阳能当地优先考虑的方法,以及用于Solar发电站的分配标准的方法。参议院第1082号法案还建立了在太阳能站居住的土地上种植和维护土壤生产的覆盖作物的要求。最后,该法案要求国家要求每年采购一定数量的太阳能,建立销售能源或可再生能源信用的过程,并要求MEA分析国家土地并开发数据库以推荐州土地来进行太阳能能源开发。MDOT正在积极研究它如何利用适当的现有MDOT财产来产生太阳能。尊重提交,皮拉尔·赫尔姆(Pilar Helm)政府事务总监马里兰交通运输部410-865-1090应该指出的是,某些MDOT财产(例如州公路管理权)具有抵押品,可以防止其用作太阳能项目的空间。在某些情况下,使用联邦资金购买财产,该财产对如何使用该财产以及如何处置财产施加了一定的限制。鉴于MDOT拥有的财产和MDOT所拥有的项目的复杂性,我们要求赞助商包括公用事业规模的太阳能设计和选址咨询委员会。马里兰州交通运输部期待与赞助商进行进一步的合作,并在参议院第1082号法案的审议中谨慎要求委员会考虑此信息。
页码简介 1 地图和数据库策略 2 新墨西哥州第四纪断层和褶皱概要 4 第四纪断层和褶皱概述 4 讨论 6 总结 7 致谢 7 贡献者名单 8 数据库术语定义 9 断层和褶皱数据库 11 900,东富兰克林山断层 12 901,Hueco 断层带 15 2001,Gallina 断层 17 2002,Nacimiento 断层 19 2002a,北部区域 20 2002b,南部区域 21 2003,Cañones 断层 23 2004,Lobato Mesa 断层带 25 2005,La Cañada del Amagre 断层带 27 2006,Black Mesa 断层带 30 2007,Embudo 断层 31 2007a, Pilar断层32 2007b,Hernandez断层34 2008,Pajarito断层38 2009,Puye断层41 2010,Pojoaque断层43 2011,阿尔玛东部无名断层46 2012,Mogollon断层47 2013,Mockingbird Hill断层49 2014, Gila 50 南部无名断层 2015 年、Mesita 断层 52 2016 年、Sunshine Valley 断层 54 2017 年、Southern Sangre de Cristo 断层 56 2017a、San Pedro Mesa 断层 57 2017b、Urraca 断层 58 2017c、Questa 断层 60 2017d、Hondo 断层 61 2017e,卡农第 62 节2018 年,Valle Vidal 断层 65 2019 年,红河断层带 67 2020 年,Las Tablas 断层 70 2021 年,Stong 断层 71 2022 年,Los Cordovas 断层 73 2023 年,Picuris-Pecos 断层 75 2024 年,Nambe 断层 77 2025 年,Lang Canyon 断层 80 2026 年,Rendija Canyon 断层 81 2027 年,Guaje Mountain 断层 85 2028 年,Sawyer Canyon 断层 88 2029 年,Jemez-San Ysidro 断层 90
参考:1。量子化学简介,A。K。Chandra,Tata MacGraw Hill 2。量子化学,Ira N. Levine,Prentice Hall 3。R. K. Prasad的量子化学,新时代国际出版商(1985)4。D. L. Pilar的基本量子化学,MC Graw Hill Book Co,纽约(1968)5。D. A. McQuarrie量子化学,OUP 1983 6。M. W. Hanna,《化学中的量子力学》,本杰明酒吧。7。分子量子力学,第三版,P。W。Atkins和R.S.弗里德曼8。化学中的小组理论和对称性,L。H. Hall(McGraw Hill)9。F. A.棉花,群体理论的化学应用,Wiley Eastern 2 Nd Edn.1992 10.V. Ramkrishnan&M。S. Gopinadhan,《化学群体理论Vishal Pub.1996》。11。无机化学,第三版,Alan G. Sharpe 12。理论无机化学,M。C。Day,J.Shellin 13。化学,第五版,约翰·E·麦克默里(John E. McMurry),罗伯特·费伊(Robert C.Hermann Dugas,生物有机化学,一种化学方法的酶作用方法,Springer International Edition 15。理论化学简介,杰克·西蒙斯(Jack Simons),剑桥16。无机化学的进展,第18和38卷。J. J. Lippard,Wiley 17。 无机反应机制,M。L。Tobe,Nelson Pub 18。 无机化学,K。F。Purcell和J. C. Kotz。 19。 生物无机化学原理,S。J。Lippard和J. M. Bers 20。 生物无机化学,I。Bertini,H。B。 Gray和S. J. Lippard 21。 22。 23。J. J. Lippard,Wiley 17。无机反应机制,M。L。Tobe,Nelson Pub 18。无机化学,K。F。Purcell和J. C. Kotz。 19。 生物无机化学原理,S。J。Lippard和J. M. Bers 20。 生物无机化学,I。Bertini,H。B。 Gray和S. J. Lippard 21。 22。 23。无机化学,K。F。Purcell和J. C. Kotz。19。生物无机化学原理,S。J。Lippard和J. M. Bers 20。生物无机化学,I。Bertini,H。B。Gray和S. J. Lippard 21。22。23。Biooganic Chemistry的原理,S。J。Lippard和J. M. Berg,大学科学书籍。生物无机化学,I。Bertini,H。B。Gray,S。J。Lippard和J. S. Valentine,大学科学书籍。无机生物化学卷I和II ed。 G. L. Eichhorn,Elsevier 24。 磁化学简介,艾伦·恩肖(Alan Earnshaw),1968年25。 磁化学元素,杜塔和Syamal,1993无机生物化学卷I和II ed。G. L. Eichhorn,Elsevier 24。磁化学简介,艾伦·恩肖(Alan Earnshaw),1968年25。磁化学元素,杜塔和Syamal,1993
1 - Gustavo ALONSO 于 1990 年获得马德里理工大学 (UPM) 航空航天工程硕士学位,1998 年获得 IESE 工商管理硕士学位,2005 年获得 UPM 航空航天工程博士学位。他目前是 UPM 航空航天工程学院的教授,并曾担任副院长。Alonso 教授讲授系统工程和航空运输课程。他的研究目前集中在航空对环境的影响及其缓解措施上。他是欧洲、美国和亚洲多所大学的客座教授。他目前是欧洲航空航天大学协会 PEGASUS 的主席,也是国际航空航天教育协会 (ALICANTO) 的董事会成员。在 2005 年加入大学之前,他曾在欧洲航天局和不同的工程公司工作了 15 年。 2 - Maria del Pilar ARGUMOSA 是一名航空发动机工程师,自 2002 年以来一直在西班牙航空航天技术研究所 (INTA) 从事氢能和燃料电池研究。她是国际能源署氢能 TCP 的西班牙执行委员会代表,同时也是多项任务的专家。她还参与了 EREA 的未来天空能源计划,以制定可持续和智能移动的研发路线图和战略。她参与了欧洲项目 (HYCARUS 和 FLHYSAFE),这些项目试图开发商用飞机中的 FC 辅助电源,并协调测试工作包。Argumosa 女士还是 SAE AE-7AFC/EUROCAE WG 80“氢燃料电池”的成员,负责制定将这些技术安全引入商用飞机的指南。她的专长是内燃机、飞机推进系统集成和测试、性能和环境测试,以及氢燃料电池在运输应用(包括无人机和飞机)中的系统开发和集成。 3 - Graeme BURT 是英国思克莱德大学电力系统杰出教授,他在该大学担任能源与环境研究所 (InstEE) 主任。他的研究兴趣涵盖分散和混合能源系统、推进电气化以及先进电力和能源系统的实验验证。他是劳斯莱斯大学技术中心 (UTC) 电力系统主任,也是兆瓦级创新和测试中心 PNDC 的首席学者。作为创始董事会成员,他为英国航空航天研究联盟 (UK-ARC) 的领导做出了贡献,该联盟是英国航空航天学术研究的国家协调小组。Graeme 支持英国推动电力革命的挑战,担任 DER IC 苏格兰领导小组成员,重点支持高功率、高完整性电力电子、机器和驱动器的供应链。Graeme 还担任 DERlab eV 董事会成员,在 EERA JP 智能电网、CIRED WG 负责直流配电网络,苏格兰团队负责可持续航空。
致谢《人工智能 (AI) 战略资源指南》是一份联合国出版物,列出了国家、地区和国际层面上现有的人工智能伦理、政策和战略资源。该指南的工作由刘伟 (经社部) 领导,Richard A. Roehl (经社部) 参与,Shantanu Mukherjee (经社部) 负责监督。该指南代表了合作的努力,反映了技术和创新领域专家的意见和贡献。总体评论和意见来自(按字母顺序排列)联合国教科文组织的 Joe Hironaka、Maksim Karliuk、Prateek Sibal、Rachel Pollack 和柯诗瑶;中国科学院的郭华东;Mario Cervantes、Karin Perset (经合组织);Monika Matusiak 和 Veerle Vandeweerd (欧盟委员会);Naoto Kanehira (世界银行);William Colglazier (美国科学促进会);傅晓兰(牛津大学);陈玉萍(联合国技术特使办公室)和徐正中(国家行政学院)。第二章主要收到来自教科文组织的贡献:Dafna Feinholz、Jo Hironaka、胡先宏、Misako Ito、Melissa Tay Ru Jein、Maksim Karliuk、Shiyao Ke、Rachel Pollack、Sasha Rubel、Prateek Sibal、Cedric Wachholz;Alica Daly(世界知识产权组织);Bob Bell Jr. 和 Pilar Fajarnes Garces(联合国贸易和发展会议);Ewa Staworzynska(国际劳工组织);Inese Podgaiska(北欧工程师协会);Jayant Narayan(世界经济论坛);Merve Hickok(人工智能和数字政策中心);Maria Jose Escobar Silva(智利政府);Majid Al Shehry(沙特数据和人工智能管理局); Miguel Luengo-Oroz(联合国全球脉动计划);Olga Cavalli(南方互联网治理学院);Stephan Pattison(Arm Ltd.)和 Vanja Skoric(欧洲非营利法中心 ECNL)。第 3 章主要由 Charles Michael Ovink(联合国裁军事务厅);世界工程组织联合会(WFEO)的龚克、William Kelly 和李攀以及国际电信联盟的 Preetam Maloor 撰写。第 4 章主要由 Christina Pombo Rivera(美洲开发银行);Elisabetta Zuanelli(电子内容研究与开发中心 (CReSEC));Friederike Schüür(联合国全球脉动计划);罗马大学)和中国科学院的 Yi Zeng 撰写。研究协助由 Adi Gorstein、Catherine Huilin Deng、Kaidi Guo 和 Naomi Hoffman 提供。本资源指南中表达的观点均为作者的观点,不代表联合国或其会员国的官方立场。欢迎对本指南提出书面评论和反馈,请发送至 Wei Liu ( liuw@un.org ) 和 Joe Hironaka ( j.hironaka@unesco.org )。
致谢《人工智能战略资源指南》是一份联合国出版物,列出了国家、地区和国际层面现有的人工智能伦理、政策和战略资源。指南的编写工作由刘伟(经社部)牵头,Richard A. Roehl(经社部)参与编写,Shantanu Mukherjee(经社部)负责监督。指南代表了各方合作的努力,反映了技术和创新领域专家的意见和贡献。以下人员提出了总体评论和意见(按字母顺序排列):联合国教科文组织的 Joe Hironaka、Maksim Karliuk、Prateek Sibal、Rachel Pollack 和柯诗瑶;中国科学院的郭华东;经合组织的 Mario Cervantes、Karin Perset;欧盟委员会的 Monika Matusiak 和 Veerle Vandeweerd;世界银行的 Naoto Kanehira;美国科学促进会的 William Colglazier;牛津大学的傅晓岚;陈于平(联合国技术特使办公室)和徐正中(国家行政学院)。第二章主要收到来自教科文组织的贡献:Dafna Feinholz、Jo Hironaka、胡先红、Misako Ito、Melissa Tay Ru Jein、Maksim Karliuk、柯诗瑶、Rachel Pollack、Sasha Rubel、Prateek Sibal、Cedric Wachholz;Alica Daly(世界知识产权组织);Bob Bell Jr. 和 Pilar Fajarnes Garces(贸发会议);Ewa Staworzynska(国际劳工组织);Inese Podgaiska(北欧工程师协会);Jayant Narayan(世界经济论坛);Merve Hickok(人工智能和数字政策中心);Maria Jose Escobar Silva(智利政府);Majid Al Shehry(沙特数据和人工智能管理局);Miguel Luengo-Oroz(联合国全球脉动);Olga Cavalli(南方互联网治理学院); Stephan Pattison(Arm Ltd.)和 Vanja Skoric(欧洲非营利法中心 ECNL)。第 3 章主要由 Charles Michael Ovink(联合国裁军事务厅)、世界工程组织联合会(WFEO)的龚克、William Kelly 和潘李以及 Preetam Maloor(国际电信联盟)撰写。第 4 章主要由 Christina Pombo Rivera(美洲开发银行)、Elisabetta Zuanelli(电子内容研究与开发中心(CReSEC)、Friederike Schüür(联合国全球脉动计划)、罗马大学)和曾毅(中国科学院)撰写。Adi Gorstein、Catherine Huilin Deng、Kaidi Guo 和 Naomi Hoffman 提供研究协助。本资源指南中表达的观点均为作者的观点,不代表联合国或其会员国的官方立场。欢迎对本指南提出书面评论和反馈,请发送至 Wei Liu ( liuw@un.org )和 Joe Hironaka ( j.hironaka@unesco.org )。
项目详细信息:手性是生命的定义特征,保留在进化中,并深深地嵌入生物过程中。所有基本生命的基础,例如蛋白质和DNA,都是手性的。传统上与结构特性有关,手性在过去的二十年中已成为独特的电子现象的来源,共同称为手性诱导的自旋选择性(CISS)。这些影响源于显着的观察结果,即通过手性分子的电子表现出自旋极化。虽然尚未完全了解基本机制,但CISS在实验上有充分的文献记录,尤其是在金属手续 - 中间连接处。最近,在纯有机二元分子中也观察到了它,并确定其超出接口的相关性。ciss被认为对生物学和技术具有深远的影响。效果可以通过减少反向散射或将自旋依赖性项引入手性结构的相互作用能来提高电子转移效率。CISS还可以直接影响化学反应吗?激进对机理(RPM)是一种描述自由基对的自旋依赖性重组的量子过程,它提供了将CISS生成的自旋极化转换为化学结果的诱人可能性。rpm描述了对自由基成对的量子自旋运动如何导致磁场效应,并通过提供磁受伤的基础的机械基础来获得一定的流行 - 许多动物物种感知地震磁场的能力 - 形成了量化生物学的核心培养基。2。我们假设将CISS耦合到rpm可以揭示新的量子行为,从而增强了激进对的弱磁场灵敏度,并保护其自旋动力学免受环境噪声引起的脱谐解。该项目探讨了CISS与RPM结合,可以加深我们对磁受伤,发现其他量子生物学现象的理解,并激发创新的生物自发性应用。研究目标:1。提前量子生物学:研究CISS调节的自由基对自旋动力学如何有助于磁体受体和其他磁场效应,以解决传统RPM模型中的局限性。利用技术的生物映射:探索自旋偏振电子传递如何在诸如光伏,电解碳固定和水分裂等技术中改善激进/极性驱动的过程。方法论:该跨学科项目通过以下方法整合了量子物理,计算化学和生物物理学:1。自旋动力学建模:开发分子动力学知情的模型,以CISS驱动的自由基对反应中的开放系统自旋动力学模型,在生物磁磁传感器加密组合体,DNA和相关系统中。结合了逼真的自旋松弛机制和自由基间相互作用。2。螺旋结构中的自旋极化:与Banerjee教授(UCLA)合作,使用相对论Kohn-Sham密度功能理论评估生物和合成螺旋结构的自旋极化潜力。3。技术应用:将CISS和RPM与扩散输入相结合
抽象怀孕是一种生理现象,涵盖了许多变化,主要变化涉及女性代谢。鉴于此,众所周知,某些变化导致妊娠过程不规则,从而导致孕产妇和胎儿二项式的并发症,干扰和死亡的机会更大,从而确定了所谓的高风险怀孕。在各种疗效中,有妊娠糖尿病(DMG),通过进行治疗的有效性导致降低怀孕期间和妊娠后可能的不利结果。因此,这项研究旨在通过应用有关遵守DMG诊断妇女治疗水平的调查表进行定量调查,并确定了阻止她们在Cascavel/PR市的高风险妊娠门诊诊所中鉴定其是否足够的主要因素。42名妇女是从一般问卷,莫里斯基绿色测试和自我护理活动问卷调整的适用中采访的。通常,有效地发生了饮食,药物疗法和血糖监测的粘附和成就,表达了统计学意义的价值(> 50%)。另一方面,体育锻炼是具有较少粘附和日常成就的支柱。此外,有可能得出结论,财务状况和工作是指出某些因果因素的参与者中有效的治疗性非辅助 - 顾问的主要原因。关键词:妊娠糖尿病;治疗;遵守治疗。抽象怀孕是一种生理现象,涵盖了许多变化,主要变化是涉及女性代谢的主要变化。鉴于这一点,众所周知,某些改变导致了不规则的妊娠过程,从而导致产妇二项式的并发症,干扰和死亡的机会更大,从而确定了所谓的高风险妊娠。在各种疗法发生中,有妊娠糖尿病(GDM),通过其治疗的有效性,妊娠糖尿病会导致妊娠期间和怀孕后可能的不利结果降低。因此,这项研究旨在通过在遵守诊断为GDM的妇女治疗的水平以及鉴定的主要因素中应用问卷,以防止在Cascavel/PR的高风险中鉴定出足够的怀孕门诊门诊诊所的主要因素。根据一般问卷的应用,莫里斯基绿色的测试和自我保健活动问卷调整的适应,对42名妇女进行了采访。通常,对饮食和药物疗法和血糖监测的遵守和实施有效地发生了,表达了统计学意义的价值(> 50%)。另一方面,体育锻炼是具有最低依从性和日常表现的支柱。此外,可以得出结论,财务状况和工作是未遵循指示某些因果因素的参与者有效治疗的主要原因。关键词:妊娠糖尿病;治疗;遵守治疗。