本研究提出了一种用于通风预热/预冷的 PCM 增强通风窗 (PCMVW) 系统,以节省建筑能源。它被设计成使用不同控制策略的夏季夜间制冷应用和冬季太阳能存储应用。建立了 PCMVW 的 EnergyPlus 模型来研究控制策略。接下来,进行了全尺寸实验来研究 PCMVW 的工作原理并验证该模型。利用经过验证的模型,将 PCMVW 的热性能和能量性能与其他 2 个通风系统进行了比较,结果表明 PCMVW 可以大大降低夏季和冬季应用的制冷/供暖能源需求。最后,本文提出了丹麦气候条件下住宅应用的控制策略。针对夏季夜间制冷应用开发的控制策略是使用玻璃间反射遮阳,直接从 PCM 热交换器向房间通风,同时应用 VW 自冷进行通风预冷模式,并使用 VW 中的空气加热房间以防止房间过冷。针对冬季太阳能储能应用开发的控制策略是使用玻璃间吸收百叶窗,利用 VW 中的热空气,并通过自冷和旁路通风冷却 VW,以防止房间过热。与原始的夏季和冬季控制策略相比,采用开发的控制策略,建筑节能分别高达 62.3% 和 9.4%。© 2020 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY-NC-ND 许可协议开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。
OpenSAFELY:儿童和青少年接种 COVID-19 疫苗的有效性 Colm D Andrews 1、Edward PK Parker 2、Elsie Horne 4、Venexia Walker 4、Tom Palmer 4、Andrea L Schaffer 1、Amelia CA Green 1、Helen J Curtis 1、Alex J Walker 1、Lucy Bridges 1、Christopher Wood 1、Victoria Speed 1、Christopher Bates 3、Jonathan Cockburn 3、John Parry 3、Amir Mehrkar 1、Brian MacKenna 1、Sebastian CJ Bacon 1、Ben Goldacre 1、Miguel A Hernan 5、Jonathan AC Sterne 4、The OpenSAFELY Collaborative 和 William J Hulme 1。 1 贝内特应用数据科学研究所,牛津大学纳菲尔德初级保健科学系,OX2 6GG,英国 2 伦敦卫生与热带医学院,Keppel Street,伦敦 WC1E 7HT,英国 3 TPP,TPP 大厦,129 Low Lane,Horsforth,利兹,LS18 5PX,英国 4 布里斯托大学人口健康科学系,Oakfield House,Oakfield Grove,布里斯托,BS8 2BN,英国 5 哈佛大学陈曾熙公共卫生学院流行病学和生物统计学系,波士顿,马萨诸塞州 02115 *通讯作者
在生命的前6周,每天两次服用8 mg/kg。在25名具有可评估PK数据的婴儿中,其中12个受EFV暴露,在第1周,有67%的EFV暴露婴儿在EFV暴露的婴儿中获得了CAVG≥75ng/ml,而77%的EFV未指示的婴儿则为C AVG≥75ng/mL。在第4周,在EFV暴露的婴儿中达到CAVG≥75ng/mL的婴儿比例下降到42%,而EFV无暴露的婴儿的比例下降了31%。研究中没有婴儿在研究期间符合安全终点或中断的MVC,并且没有婴儿获得HIV。FDA在儿童> 6周的儿童中提出了MVC剂量的建议,但年龄在2岁以下的儿童中是基于使用Incract 2007研究中的PK数据进行建模的。种群PK模型,包括对年龄和成熟变化的评估,是从2007年的数据中开发出来的,以描述MVC的生命后6周内的MVC处置。3具有FDA批准的重量剂量的模拟导致大多数模拟患者(84.3%)达到平均浓度≥75ng/ml。在考虑将MVC用于新生儿和婴儿时,应咨询小儿艾滋病毒专家。
摘要简介:抗生素通常是在重症监护中处方的,鉴于这些患者的药代动力学(PK)参数的差异很大,药物PK在治疗过程中经常有所不同,患有治疗衰竭或毒性的风险。因此,重症患者的足够抗生素给药非常重要。涵盖的区域:本综述概述了PK的基本原理和抗生素的药效学以及可能影响抗生素剂量的主要患者和病原体特征以及调整剂量的不同方法。专家意见:根据每日药物浓度监测,应针对氨基糖苷和糖肽进行剂量调整。对于糖肽,特别是万古霉素,应每天评估残留的浓度(CRE)。对于β-内酰胺抗生素,应进行负载剂量,然后进行三种不同的方法,因为在大多数中心很少使用TDM:1)应根据肾功能和其他危险因素对抗生素方案进行调整; 2)列表或软件可用于计算每日剂量; 3)TDM应在治疗开始后24–48 h进行;但是,需要在24小时内进行适当调整剂量方案的结果。根据TDM结果,应降低或增加药物给药。
摘要 尽管适体本身或作为适体-药物偶联物在临床前和临床研究中已表现出出色的靶标特异性,但它们的体内组织药代动力学 (PK) 分析仍然存在问题。我们旨在研究基于图像的正电子发射断层扫描 (PET) 在评估寡核苷酸的体内组织 PK、靶标特异性和适用性方面的效用。为此,使用互补寡核苷酸平台通过碱基对杂交合成了具有 erb-b2 受体酪氨酸激酶 2 (ERBB2) 特异性结合的氟-18 标记适体。为了研究体内组织的 PK 和特性,在正常和肿瘤异种移植小鼠中评估了体内 PET 成像在开发基于寡核苷酸的药物中作为评估工具的有效性。 ERBB2-cODN-idT-APs-[ 18 F]F ([ 18 F] 1 )静脉注射后,除最初的脑和肌肉外,在大多数组织中均有显著而快速的摄取;摄取量在心脏最高,其次是肾脏、肝脏、肺、胆囊、脾脏和胃。排泄的主要途径是通过肾脏~77.8%,而总剂量的约8.3%是通过胆道。
摘要:蛋白水解靶向嵌合体 (PROTAC) 通过诱导肿瘤过表达致癌蛋白的降解而迅速成为一种潜在的癌症治疗策略。它们可以通过募集 E3 连接酶和利用泛素-蛋白酶体途径特异性地催化目标致癌蛋白的降解。由于其作用方式具有普遍性、不可逆性、可回收性、持久性并且适用于“不可用药”的蛋白质,PROTAC 正在逐渐取代传统小分子抑制剂的作用。此外,它们的应用领域正在扩展到癌症免疫治疗,因为各种类型的致癌蛋白都参与了免疫抑制肿瘤微环境。然而,较差的水溶性和低细胞通透性大大限制了药代动力学 (PK) 特性,这需要使用适当的递送系统进行癌症免疫治疗。本综述首先简要介绍PROTAC的一般特性、发展现状和药代动力学。然后介绍近年来各类PROTAC的被动或主动靶向递送系统的应用研究,并描述它们对PROTAC的药代动力学和肿瘤靶向性的影响。最后,总结了近年来用于癌症免疫治疗的PROTAC药物递送系统。采用合适的PROTAC递送系统有望加速PROTAC的临床转化,并提高其对癌症治疗的有效性。
病例报告:该患者30多年前左眼曾接受过角膜内环段手术(ICRS),以矫正因扩张复发而导致的散光(2012年)。ICRS术后,患者的屈光散光度数从-9.00 D改善至-3.50 D,并保持稳定达8年。十年后,患者决定再次进行手术干预。当时的角膜内环段较小,位于瞳孔中心,且瘢痕处扩张。因此,我们决定进行DALK手术。在这些病例中,钻孔手术在原瘢痕外进行,以角膜缘和瞳孔为中心。然后,我们继续进行 Anwar 于 1974 年描述的去角膜后弹力层手动解剖,从钻孔边缘开始,目标是达到角膜中央 50 至 70 微米之间的去角膜后弹力层前平面,通过术中 OCT 或超声角膜厚度测量,然后继续向周边解剖。深层平面的解剖动作必须小心,避免在疤痕水平牵引。一旦达到中央水平的适当平面,我们必须越过 PK 的疤痕到达新钻孔的边缘,防止疤痕裂开并造成穿孔。一旦获得适当的平面,就要准备供体角膜并缝合。