目的:探讨桉叶油精柠檬蒎烯肠溶胶囊(QIENUO)治疗肺囊性纤维化(CPF)的作用机制,分析QIENUO与CPF的共同靶点,验证核心蛋白与小分子的分子对接。方法:从PubChem、SwissTargetprediction、GeneCards、PharmMapper、TCMSP数据库中获取主要活性化合物及其对应靶点,从GeneCards、OMIM、DisGeNET、TTD数据库中筛选与CPF相关的靶点。通过维生信网站利用基因本体论(GO)和京都基因与基因组百科全书(KEGG)对“QIENUO-CPF”共同靶点进行分析,利用Cytoscape构建蛋白质-蛋白质相互作用(PPI)网络和化合物-靶点-通路网络,并系统分析网络参数。采用分子对接方法评估并验证核心蛋白与单体成分之间的相互作用。结果:筛选出228个活性化合物靶点和1354个CPF相关靶点,对92个共同靶点进行GO和KEGG分析。结果显示,切诺对CPF的治疗作用主要通过AMPK信号通路、cGMP-PKG信号通路和TGF-β信号通路实现。分子对接结果显示,15对配体-受体对中,有9对的结合能低于-6kjmol-1。结论:切诺作为治疗肺囊性纤维化的药物具有巨大的潜力,研究和论证了切诺治疗CPF的具体分子机制和有效活性成分,为切诺更好的临床应用提供理论基础。关键词:网络药理学;分子对接;肺囊性纤维化;桉叶油素、柠檬烯、蒎烯肠溶胶囊
国防贸易管制政策办公室主任 美国国务院 PM/DDTC,SA-1,12 楼 2401 E Street, NW 华盛顿特区 20037 美国 DDTCPublicComments@state.gov 收件人:ITAR 修正案 - 第 VIII 和 XIX 类 先生您好,我代表航空航天、国防和军民两用产品出口集团 (EGADD) 给您写信,该集团是一个非营利性特殊利益行业组织,专注于出口和贸易管制合规事务的各个方面,是英国唯一专门处理出口和贸易管制问题的全国性工业机构。EGADD 在 ADS 集团有限公司 (ADS)、英国海军、英国海军装备协会 (BNEA)、海事工业协会 (SMI) 和 TechUK 的联合赞助下开展工作。这是对美国国务院于 2016 年 2 月 9 日发起的磋商的回应(www.gpo.gov/fdsys/pkg/FR-2016-02-09/html/2016-02587.htm),该磋商旨在修改《国际武器贸易条例》(ITAR),修订美国军火清单(USML)第 VIII 类(飞机及相关物品)和第 XIX 类(燃气涡轮发动机及相关设备),以更准确地描述 USML 上需要控制的物品。我们一直密切关注着英国对美国出口管制的持续改革,并对此产生了浓厚的兴趣。现在我们很高兴地看到,与一些人的悲观预测相反,这些努力迄今为止取得了进展。从英国工业的角度来看,我们一直坚决支持拟议的改革计划,并且意识到世界各地的其他公司和行业贸易机构也同样对美国 ECR 的发展抱有极大的兴趣。我们谨代表英国工业向您提交以下评论和意见,供您参考。正如我们在 2016 年 1 月 28 日星期四在伦敦与 Brian Nilsson 以及 DDTC 其他高层人物会面时所指出的那样,我们非常欢迎有机会不仅面对面地表达我们的观点,而且还对正在发布的任何征求意见的提案发表评论,我们认为这些提案非常有建设性。
eq> s; g crkrs gq,cm+h [kq'gk jgh gs fd bl qk; usaf; usaf; y bzvj 2021&22 esa vkids“ kfdr ieil〜1⁄4bf.m; k1⁄2 unkj jgk gs] ekjk fxzm&dusdvsm lksyj iei esa gs ftlls ikuh vksj mtkz nksukas nksukas dh cpr gksxha fmekam dks /;ku esa j[krs gq, gekjh daiuh us tks dh gekjs R&D Vhe us xzkgd dh mPp fjDOk;kjesUV dks ns[krs gq,] ikuh vkSj fctyh dh cpr dks ns[msagrs gqV,] Vhe Ir gqvk gSA S4RM VsDuksykWth esa geus cgqr vPNk dk;Z fd;k gS exVj ,fQf”k,alh dks bEizwo fd;k gSA gekjs xzkgdksa dk fctyh dk fcy de djuk geksjk FkxVh Vykhe] kkunkj dk;Z fd;k vkSj nwljs isVsaV esa ,uthZ ,fQf”k,a”kh dks ,pho fd;kA gekjs lkeus ,d pSysat fctyh daiuh ds ykWlsl dk Fkk] geuft gezwos jzvos dgsjV Q]g pk one dk;Z fd;k vkSj cgqr vPNh VsDuksykWth Msoyi gqbZ vkSj gesa isVsaV izkIr gqvkA
高级糖基化终产物(年龄)是糖暴露引起的蛋白质或脂质的异常修饰。它们与衰老和各种退化性疾病有关,例如糖尿病,动脉粥样硬化,慢性肾脏疾病和阿尔茨海默氏症。年龄丰富的动物衍生的食物可以在烹饪过程中导致进一步的年龄形成,但目前尚不清楚饮食年龄是否有助于这些问题。年龄通常是通过代谢过程在体内产生的,尤其是高碳水化合物饮食。这种修饰会导致糖尿病并发症。年龄几乎影响体内的每个细胞和分子,在衰老和与年龄有关的疾病(如心血管疾病和阿尔茨海默氏病)中发挥作用。在糖尿病中,年龄可以诱导血管僵硬,低密度脂蛋白颗粒(LDL)的诱捕和LDL的糖化,从而促进氧化。氧化的LDL与动脉粥样硬化有关。年龄也与愤怒结合,导致血管内皮细胞中的氧化应激和炎症途径。所涉及的疾病包括阿尔茨海默氏病,心血管疾病,中风和白内障。年龄会导致肌肉功能降低,血管渗透性增加,动脉僵硬,抑制血管扩张以及增强的氧化应激。在糖尿病患者中,血红蛋白年龄水平升高,在视网膜,镜头和肾皮质中,年龄的积累随时间增加。抑制年龄形成可减少糖尿病大鼠的肾病。年龄形成可能会限制疾病进展并提供新的治疗工具。年龄具有特定的细胞受体,尤其是愤怒。激活这些受体会触发炎症反应,从而导致转录因子NF-κB的氧化应激和激活。这个过程有助于各种慢性炎症性疾病,例如动脉粥样硬化,哮喘,关节炎,心肌梗塞,肾病,视网膜病变,牙周炎和神经病。发病机理涉及NF-κB对参与炎症的基因的调节。年龄。在清除中,细胞蛋白水解产生年龄肽和“无年龄加合物”。这些被释放到血浆中并在尿液中排泄,除了无法通过基底膜的细胞外衍生的年龄蛋白。周围巨噬细胞和肝窦内皮细胞已与此过程有关。更大的年龄蛋白在排泄之前将其降解为肽和游离加合物。晚期糖基化终产物(RAGE)的受体激活触发了一系列事件,最终导致肾小球硬化和肾脏功能降低,而高级糖基化最终产物(年龄)的患者中的肾脏功能降低。年龄是由于非酶糖基化而产生的,该糖基化受到高血糖的恶化。年龄的分解产物比原始年龄蛋白更具侵略性,即使已经实现了葡萄糖控制,也可以使相关的病理永存。此外,有些年龄具有先天的催化氧化能力,而另一些年龄可以通过激活NAD(P)H氧化酶诱导氧化应激。饮食选择会影响年龄的形成。2007年的一项研究发现,NRK-49F细胞中TGF-β1,CTGF和FN mRNA的年龄显着增加了通过增强氧化应激而在NRK-49F细胞中的表达,这表明氧化应激的抑制可能是Ginkgo biloba biloba提取物在糖尿病性肾病中的作用。作者提出抗氧化剂治疗可以帮助防止年龄积累和造成损害。有效的清除对于防止年龄引起的损害是必要的,并且患有肾功能障碍的人可能需要进行肾脏移植。在糖尿病患者中经历了年龄增加的肾脏损害,肾脏损害减少了随后的尿量去除年龄,从而产生了积极的反馈回路,从而加速了损害。形成晚期糖基化末端产物(年龄)的形成可以受到某些化合物的限制,例如氨基瓜氨酸,它们与3-脱氧葡萄糖反应。年龄,导致氧化应激和炎症。乙二醛酶系统在分解年龄的前体的甲基乙醇中起作用。涉及吃未煮过的食物的原始食物主义可能会减少年龄的摄入量。n(6) - 羧甲基透析是与心血管疾病和衰老有关的年龄。研究表明,先进的糖基化终产物与各种健康问题有关,包括糖尿病,心血管疾病和衰老。晚期糖基化终产物(RAGE)的受体在这些疾病的发病机理中起作用。研究还发现,血清羧甲基赖氨酸与成年人主动脉脉冲波速度的增加有关。通过饮食变化限制年龄的摄入量可能有助于防止或减慢与年龄相关的疾病的发展。但是,需要更多的研究来充分了解年龄与人类健康之间的关系。注意:我试图在维护原始含义和上下文的同时总结文本的要点。研究人员一直在研究高级糖基化最终产品(年龄)对各种健康状况的影响。年龄是当蛋白质或脂肪与体内糖结合时形成的物质,导致氧化应激和炎症。研究表明,年龄可以导致糖尿病性心血管疾病,阿尔茨海默氏病和其他疾病。在孕妇中,年龄会影响胎儿发育,并可能与妊娠并发症的风险增加有关。晚期糖基化终产物(RAGE)的受体在该过程中起着关键作用,因为它与年龄结合并触发炎症。其他研究发现,年龄可以交叉链接蛋白并加速细胞中包含体的形成,从而导致细胞死亡。一些研究还探索了抑制愤怒的形成或活性的潜在益处,例如使用氨基瓜氨酸在中风期间预防神经毒性。此外,研究人员还研究了年龄对晶状体蛋白的影响及其在白内障发生中的作用。晚期糖基化终产物(年龄)的积累与与糖尿病有关的各种并发症,尤其是肾纤维化和氧化应激。但是,这些机制的有效性仍在争论中。总体而言,研究表明,在研究各种健康状况时,年龄是要考虑的重要因素,并且了解其机制可能会导致预防或治疗与氧化应激和炎症有关的疾病的新治疗策略。研究表明,年龄会通过触发炎症和疤痕来对肾细胞造成损害。几项研究调查了年龄在糖尿病性肾病中的作用,发现靶向年龄产生的抑制剂可以减缓疾病的进展。年龄是通过称为糖化的过程形成的,糖分子与蛋白质或脂质结合,导致氧化应激和炎症。年龄(愤怒)的受体通过触发促炎途径在介导这些作用中起关键作用。研究人员已经确定了可以抑制年龄产生的各种化合物,包括某些天然抗氧化剂和酶。此外,研究表明,通过清除剂受体介导的内吞作用或其他机制去除年龄可以帮助减轻氧化应激和炎症。总体而言,年龄,肾纤维化和氧化应激之间的关系一直是一个强烈的研究兴趣的话题,对开发与糖尿病相关并发症的新治疗方法的潜在影响。**晚期糖基化末期(年龄)**研究表明,晚期糖基化终产物(年龄)是当糖分子与体内蛋白质或脂质结合时形成的一种分子。这些年龄与包括糖尿病和阿尔茨海默氏病在内的各种疾病有关。**去除年龄**研究表明,某些酶(例如肝清除率)可以从体内清除年龄。**年龄和肾病**研究表明,口服吸收的反应性糖基化产物(糖毒素)可能有助于糖尿病性肾病。这表明年龄可能在与糖尿病相关的肾脏损伤的发展中发挥作用。**抗年龄化合物**几种化合物已被鉴定为年龄形成的潜在抑制剂,包括: *牛磺酸 *乙酰基-L-肉碱和α-脂肪酸 *阿司匹林 *白藜芦醇 * carnosine *这些化合物这些化合物可能有助于防止年龄形成并减轻其对身体的影响。**机制**研究还确定了可能有助于与年龄相关疾病发展的各种信号通路,包括: * PI3K/PKG/PKG/ERK1/2在皮质神经元中 * TRPA1-NRF信号途径中的毒素神经元中的潜在靶向介绍。**含义**年龄的积累与各种与年龄有关的疾病和状况有关。了解年龄形成和去除的机制对于为这些疾病开发有效治疗至关重要。先进的糖基化终产物(年龄)是一种多样化的化合物,它们通过人体自然和人为地通过人体的各种生化途径形成。它们是从糖,蛋白质或脂质的糖和游离胺基的羰基相互反应时会产生的,从而导致稳定,不可逆的终产物。研究表明,年龄在许多疾病和病理学中起着重要作用,包括糖尿病,癌症,心血管疾病,神经退行性疾病,甚至是Covid-19。它们被特定的细胞受体识别,这会引发炎症和氧化应激途径。尽管对年龄进行了许多研究,但它们与人类生理和病理学的复杂相互作用需要进一步研究。本综述着重于年龄受体的结构,它们在各种疾病中的作用以及导致内源性和外源性形成的过程。它还旨在将年龄分类为子组,并概述其创建所涉及的基本机制。这项研究强调了了解年龄及其受体的重要性,因为它们与广泛的疾病和疾病有关。需要进一步的研究以充分阐明年龄在人类生理和病理学中的作用。本文讨论了高级糖基化末端(年龄),这些糖基分子与蛋白质或脂质中的氨基反应时形成的化合物。作者描述了各种类型的年龄,包括葡萄糖衍生,果糖衍生和其他年龄,并为每种类型提供化学结构表示。本文还描述了年龄的受体(RAGE),该受体与年龄结合并在其细胞作用中起关键作用。图3显示了愤怒的域组织及其配体结合模式,包括与年龄相互作用的蛋白质的不同区域。最后,本文讨论了Stab1,这是另一种与年龄相互作用的蛋白质,并提供了其领域组织的图表。图4说明了Stab1和Stab2受体的结构域组织以及Stab2的Fas1结构域的结构。该图显示了Stab1和Stab2受体具有EGF样结构域重复序列,七个FAS1域,一个链路结构域,跨膜区域和一个细胞质(无序)结构域。随后,文本讨论了高级糖基化最终产物(年龄)及其受体(愤怒)对心肌收缩和线粒体功能的影响。它参考了几项研究,探讨了年龄和愤怒在心血管疾病中的作用。此外,该文本还提到了铁铁作用在糖尿病并发症中的潜在作用,以及年龄的动态作用及其与糖尿病的关系。本文还讨论了多元途径诱导的氧化和渗透应激在糖尿病性白内障病因中的协同作用。此外,它突出了选定的植物来源的多酚作为外围动脉疾病的潜在治疗剂,以及巨噬细胞免疫调节的新视野,以治愈糖尿病足溃疡。此参考资料是从2022年开始的,可以通过医学公共图书馆(PMC)免费访问。已审查了所讨论的来源,这意味着其内容已由专家彻底检查和验证。
Deles Group x x x x x x x x x x x x x x x x x DS Smith x x x x x x x x x x x x x x x x x x x x x Element Materials Technology x x x x x x x x x x Elite Electronic Engineering, inc. x x x x x x x x EMTS Lab Inc x x x x x x x EPE USA x x x x x x x x x x x x x x x x Fisher Packaging x x x x x x x x x x x x x x Foxconn Baja California x x x x x x x x x x x x x x Fugang Industrial Testing Services x x x x x x x x x x x Fuseneo x x x x x x x x x Gaynes Labs Inc. x x x x x x x x x x x Georgia Pacific x x x x x x x x x x x x x gh Package & Product Testing and Consulting, Inc x x x x x x x x x x x x x x GiC Testing & Inspection Services x x x x x x x x x x Graphic Packaging International x x x x x x x x x x x x x x x Green Bay Pkg x x x x x x x x x x x x x Great Northern/laminations X X X X X X X X X X X X X X X X X X X X X X X X X X X Grifal Spa X X X X X X X X X X X X X X X X X X X X X X X X X X X XXXX X X X X GRUPO LA PLANA X X X X X X X X X X X X X X X X H.B. H.B. H.B. H.B.Fuller x x x Heritage Paper x x x x x x x x x x x x x x x x x x x Hinojosa x x x x x x x x x x x x x x x x x x x x x x x x x x x Hood Container Corporation x x x x x x x x x x x x x x x Houston Foam Plastics x x x x x x x x x x x x x x x x x x x x x x HQTS x x x x x x x x x x IBE-BVI (Belgian Packaging Institute) x x x x x x x x x x x x x International Paper x x x x x x x x x x x x x x Intertape Polymer Group Inc. x x x x x x x x x x x x x Intertek x x x x x x x x x x x x x x x IPS Technology x x x x x x x x x x x x x x x x x x x x x x x x x x x x x ITENE- Technology and Transport of Spain x x x x x x x x x x x x x x Jabil x x x x x x x x x Kaleidoscope x x x x x x Kelly Box & Packaging Corp. x x x x x x x x x x x x x x x x x x x x x x x x x x x x x Keystone Compliance x x x x x x x x x x Klingele x x x x x x x x x x x x Landsberg Orora X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X L&E International Ltd X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X Lumi X X Lumi X X X X X X X X X X X X X X X X X X MarkS