对未来的网格级存储应用有吸引力。金属Zn作为AZB的理想阳极,具有最高的理论能力(5851 mAh ml -1)。它也是无毒的,不可易变的,丰富的,并且具有良好的电导率和水稳定性。[1-5]然而,循环过程中的召开金属锌阳极遭受严重的树突形成,造成了严重的问题,例如较差的可逆性,电压滞后,寄生反应增加,缩短了电池损坏造成的电池故障以及其他问题。[1,3,6]这些树突状结构,稀有的针或非平面血小板沉积物,在电极的不规则或有缺陷区域偏爱形成,在该区域中,局部电流密度最高,初始核核事件最有可能[7],并且在高电流和coscAcs cocclities和coscling cancling cancling and coscling and cancliesitions [7]。[8,9]控制和抑制树突状增长的策略围绕着操纵电力,通常是通过包含添加剂[10-15],或通过将电极设计到高面积的海绵中[16-18],[16-18]或保护表面涂料,[19]以供应,[19]以抑制构建dendrite。
摘要 - 平面I形折叠点天线,占地面积为21 mm×21 mm×1.6 mm,设计用于紧凑的UHF RFID标签,可在金属上串联。天线由三个部分组成:平方接地平面,一个I形斑块和环谐振器。I形贴片通过狭窄的短枪互连到接地平面,并将微带进料线插入贴片中,以减少贴片的输入阻抗。环谐振器引入的额外电容和电感可以将标签的谐振频率降低到预期的UHF RFID频段。所提出的天线是制造的,模拟和测量结果之间具有良好的一致性。所提出的标签天线在920 MHz的谐振频率下,在金属上达到高达6.3 m的距离(具有4 W当量的各向同性辐射功率)。
纳米结构的氧化锆和黄金膜(NS-AU/ZRO X)已被证明为具有非线性和滞后电气行为的特征,具有短期记忆和增强/抑郁活性。在这里,我们研究了调节纳米结构双层Au/Zro X膜的非线性行为的传导机制。尤其是,我们遵循Chua对综合系统的方法进行了研究,并分别对膜中的离子迁移和电子传输进行了建模。双层纳米结构系统所表现出的传导机制受到纳米形态的强烈影响,纳米形态由于电刺激而动态变化。沿微观结构中的瓶颈和边缘沿着强烈的本地电场和高迁移率促进了结构重排。电子传输是电极界面处的Schottky屏障和块状纳米材料中的Poole-Frenkel效应。在这里讨论了Poole-Frenkel效应的模型,以在高应用场机制中包括库仑陷阱的饱和;提出的模型已通过具有不同的扫描速度和不同温度(从300至200 K)的实验电压坡道进行了验证,以及功率指数参数分析。
紧凑、轻便、高效和可靠的电源转换器是未来全电动飞机 (MEA) 的基础。支持航空航天工业电气化的核心要素是采用 SiC MOSFET 的电源模块 (PM)。为了充分利用 SiC 实现的高开关速度,并应对功率器件并联带来的挑战,必须研究新颖的 PM 概念。本文探索了高度对称的布局、低电感平面互连技术和集成缓冲电容器,以实现高效、快速开关和可靠的全 SiC PM 用于 MEA 应用。与最先进的全 SiC PM 相比,对多项性能指标的全面评估证明了所提出的设计方法和制造技术的优势。此外,通过集成温度和电流传感器,在开发的 PM 中添加了智能功能,这对于 MEA 中电力电子的安全应用至关重要。在此背景下,演示了如何使用 MOSFET 的温度敏感电气参数进行在线结温估算,从而实现非侵入式(即无需专用传感器)热监控。此外,还设计了一个高度紧凑的栅极驱动器,以减少整个系统的体积和复杂性,并将其集成在 PM 的外壳中。最后,在 PM 以 500V 和 200A 运行时测量开关波形,证明了低电感布局、集成缓冲器和栅极驱动器所带来的性能改进。
Sb 2 S 3 是一种很有前途的环保半导体,可用于高性能太阳能电池。但是,与许多其他多晶材料一样,Sb 2 S 3 受到非辐射复合和晶界 (GB) 载流子散射的限制。这项工作表明,通过在 Sb 2 S 3 沉积的前体溶液中加入适量的 Ce 3 +,Sb 2 S 3 薄膜中的 GB 密度可以显著从 1068 ± 40 nm μ m − 2 降低到 327 ± 23 nm μ m − 2。通过对结构、形貌和光电特性的广泛表征,并辅以计算,我们发现一个关键因素是在 CdS/Sb 2 S 3 界面处形成一层超薄 Ce 2 S 3 层,这可以降低界面能并增加 Sb 2 S 3 和基底之间的粘附功,以促进 Sb 2 S 3 的异质成核,并促进横向晶粒生长。通过减少晶界和/或 CdS/Sb 2 S 3 异质界面的非辐射复合,以及改善异质结处的载流子传输特性,这项工作实现了高性能 Sb 2 S 3 太阳能电池,其功率转换效率达到 7.66%。开路电压 (V OC ) 达到了惊人的 796 mV,这是迄今为止报道的 Sb 2 S 3 太阳能电池的最高值。这项工作提供了一种同时调节 Sb 2 S 3 吸收膜的成核和生长的策略,以提高设备性能。
摘要:提出了通过涡流方法测量结果识别平面对象的材料属性的新方法。这些方法基于最新的替代策略和高级优化技术,这些技术可以提高效率并减少问题解决方案的资源消耗,并平衡计算复杂性与结果的准确性。用于全局替代优化的高性能元模型基于深度有意义的完全连接的神经网络,它是积累有关对象的APRIORII信息的附加功能。由测试过程的“精确”电动力学模型确定的多维响应表面的近似值可以通过根据计算机设计的计算机设计来确保,该计算是均质实验的计算机设计,其重量较低的对称中心差异。提供了用于完整和缩小的尺寸搜索空间进行的数值实验的结果,可以通过使用主要组件方法来获得线性转换获得。这些方法的验证证明了它们的良好精度和计算性能。
在这项工作中,Taguchi方法方法用于优化氧化石墨烯(GO)作为倒置的钙钛矿太阳能电池(IPSC)中的孔传输层(HTL)。通过使用此方法,优化了来自数值建模太阳能电池电容模拟器 - 尺寸(SCAPS-1D)的数据。尽管它具有不同的参数结果和不同的原因,但完成分析过程也需要很长时间。据报道,Taguchi方法能够找到最重要的因素并减少更少的时间的参数变化。Taguchi算法在本实验中使用,因为它基于正交阵列(OA)实验,该实验为具有最佳控制参数值的实验提供了较小的方差。SCAPS-1D软件用于使用HTL模拟IPSC。 然后分析使用软件获得的结果,并将其与太阳能电池的性能进行比较。 最终结果表明,与以前的研究人员相比,Taguchi方法与HTL相比优化了IPSC,HTL的功率转化效率(PCE)提高了,效率从18.53%.23.408%提高。SCAPS-1D软件用于使用HTL模拟IPSC。然后分析使用软件获得的结果,并将其与太阳能电池的性能进行比较。最终结果表明,与以前的研究人员相比,Taguchi方法与HTL相比优化了IPSC,HTL的功率转化效率(PCE)提高了,效率从18.53%.23.408%提高。
钙钛矿表面很少是化学计量的,通常是排便的。3个钙钛矿表面的缺陷可能会引起显着的非放射电荷重组,并使太阳能电池性能恶化。3 - 7尤其是在最新的太阳能电池中,与散装或晶界相比,钙钛矿和电荷传输层之间的界面的非放射性重组是主要的。4因此,界面缺陷的钝化对于实现高效率PSC是关键。为此,已经报道了许多钝化方法,例如,通过添加小分子,聚合物和无机化合物的层间或掺入宽频段间隙2D perovskites。8 - 11尽管对太阳能电池效率有所改善,但仍然关注这些方法的可观性。最近,宽频段氧化物的原子层沉积(ALD)(例如al 2 o 3)已成为一种有前途的钝化钙钛矿表面的有希望的策略。12 ALD是一种可伸缩的蒸气 - 相薄 - LM沉积技术,它依赖于序列的交替自限制表面反应,它以在具有原子厚度和 lm厚度控制的表面上产生高度均匀的连形薄lms而闻名。
摘要 - 在本文中,我们提出了一种控制机器人系统的通用方法,该机器人系统与环境建立和破坏。有关参考轨迹的近似值。这些动态使上层计划问题可以理解联系时间和力量,并在线生成全新的接触模式序列。为了获得可靠且快速的数值收敛,我们为这些LCP触点动力学设计了一个结构探索的内点求解器,以及用于跟踪问题的自定义轨迹优化器。我们演示了CI-MPC的实时解决方案率,以及在四足机器人上硬件实验中生成和跟踪非周期行为的能力。我们还表明,控制器可以建模不匹配模型,并且可以通过在模拟中发现和利用各种机器人系统的新接触模式来响应干扰,包括Pushbot,Planar Hopper,Planar hopper,Planar Quadruped和Planar Bip。
摘要:在机器人技术中,已经证明了四足机器人在工业,采矿和灾难环境中执行任务的能力。为了确保机器人安全执行任务,其脚部位置的细致计划和精确的腿部控制至关重要。四足机器人的传统运动计划和控制方法通常依赖于机器人本身及其周围环境的复杂模型。建立这些模型由于其非线性性质可能会具有挑战性,通常需要大量的计算资源。但是,存在一种更简化的方法,该方法着重于机器人浮动基础进行运动计划的运动学模型。这种简化的方法更易于实现,但也适用于更简单的硬件配置。将阻抗控制纳入腿部运动是有利的,尤其是在穿越不平坦的地形时。本文提出了一种新颖的方法,其中四足机器人对每条腿采用阻抗控制。它利用六度的贝齐尔曲线来生成从平面运动模型中用于身体控制的腿部速度的参考轨迹。该方案有效地指导机器人沿预定义的路径。使用机器人操作系统(ROS)实施了拟议的控制策略,并通过GO1机器人的模拟和物理实验进行验证。这些测试的结果证明了控制策略的有效性,使机器人能够跟踪参考轨迹,同时显示稳定的步行和小跑步态。
