自疫情爆发以来,各组织一直在积极寻求提高组织敏捷性和弹性 (regility) 的方法,并转向人工智能 (AI) 来获得更深入的理解并进一步提高其敏捷性和弹性。各组织正在将人工智能作为实现这些目标的关键推动因素。人工智能通过快速准确地分析大型数据集来增强组织的能力,从而实现更快的决策并建立敏捷性和弹性。这种战略性地使用人工智能为企业带来了竞争优势,并使其能够适应快速变化的环境。如果不优先考虑敏捷性和响应能力,可能会导致成本增加、错失机会、竞争和声誉受损,并最终导致客户、收入、盈利能力和市场份额的损失。可以通过利用可解释的人工智能 (XAI) 技术来确定优先级,阐明人工智能模型如何做出决策并使其透明、可解释和可理解。基于之前关于使用人工智能预测组织敏捷性的研究,本研究重点关注将可变形人工智能技术(例如 Shapley 加法解释 (SHAP))整合到组织敏捷性和弹性中。通过确定影响组织敏捷性预测的不同特征的重要性,本研究旨在揭开使用可变形人工智能的预测模型的决策过程的神秘面纱。这对于人工智能的道德部署、在这些系统中培养信任和透明度至关重要。认识组织敏捷性预测中的关键特征可以指导公司确定要集中精力在哪些领域以提高其敏捷性和弹性。
Reviewer for ICASSP, INTERSPEECH, LREC, SCiL, the National Science Foundation, the Natural Sciences and Engineering Research Council of Canada, Oxford University Press, Biolinguistics , Cognition , Cognitive Science , Computational Linguistics , Glossa , Journal of Child Language , Journal of Linguistics , Journal of Autism & De- velopmental Disorders , Language , Language Variation & Change , Lingua , Nature Communication , Phonology , PLOS ONE , and计算语言学协会的交易。
*分别提供有关暴露和未暴露组的信息。注意:解释和详细文章讨论了每个清单项目,并提供了方法论背景和已发表的透明报告示例。最佳使用本文的Strobe CheckList(可在http://www.plosmedicine.org/,http://wwwww.annals.org/,and Epidemiologoly and httttppppppppppppp://wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww 一下,至时候,自由使用一下Plos Medicine网站。有关Strobe Initiative的信息可在http://www.strobe-statatement.org上获得。
Nature Neuroscience, Nature Computational Science, Nature Communications, eLife, Journal of Neuroscience, PLOS Computational Biology, Current Opinion in Neu- robiology, Neural Networks, Chaos, Frontiers in Neuroscience, JMLR (Journal of Machine Learning Research), NeurIPS (Conference on Neural Information Processing Systems), ICLR (International Conference on Learning Representations), ICML (In- ternational Conference on Machine Learning), Cosyne (计算和系统神经科学),CCN(认知计算神经科学会议),CNS(计算神经科学组织)
*在病例对照研究中分别提供有关病例和对照的信息,如果适用,则针对队列和横断面研究中暴露和未暴露的组。注意:解释和详细文章讨论了每个清单项目,并提供了方法论背景和已发表的透明报告示例。最佳使用本文的Strobe CheckList(可在http://www.plosmedicine.org/,http://wwwww.annals.org/,and Epidemiologoly and httttppppppppppppp://wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww 一下,至时候,自由使用一下Plos Medicine网站。有关Strobe Initiative的信息可在www.strobe-statement.org上获得。
Genome Research,22:2356(2012 年)。• A. Ariza-Cosano、A. Visel、LA Pennacchio、HB Fraser、JL Gómez-Skarmeta、M. Irimia 和 J. Bessa。小鼠和斑马鱼报告基因检测中增强子活性的差异通常与基因表达的变化有关。BMC Genomics,13:713(2012 年)。• HB Fraser。基因表达驱动人类的局部适应。Genome Research,23:1089(2013 年)。• J. Chang、Y. Zhou、X. Hu、L. Lam、C. Henry、EM Green、R. Kita、MS Kobor 和 HB Fraser。酵母中顺式调控适应的分子机制。PLoS Genetics,9:e1003813(2013 年)。 • JD Smith、K. McManus 和 HB Fraser。一种针对顺式调控元件选择的新测试揭示了作用于哺乳动物转录增强子的正向和负向选择。分子生物学与进化,30:2509(2013)。• HB Fraser。细胞周期调控转录与酵母和人类的 DNA 复制时间有关。基因组生物学,14:R111(2013)。• CG Artieri 和 HB Fraser。酵母中两种基因表达水平的进化。基因组研究,24:411(2014)。• CG Artieri 和 HB Fraser。转录本长度介导果蝇基因表达的发育时间。分子生物学与进化,31:2879(2014)。• CG Artieri 和 HB Fraser。考虑核糖分析数据中的偏差表明脯氨酸在阻碍翻译中起着重要作用。 Genome Research, 24: 2011 (2014)。• R. Jiang, MJ Jones, E. Chen, SM Neumann, HB Fraser , GE Miller 和 MS Kobor。两种可及人体组织间 DNA 甲基化变异的不一致性。Scientific Reports 5: 8257 (2015)。• RC McCoy, Z. Demko, A. Ryan, M. Banjevic, M. Hill, S. Sigurjonsson, M. Rabinowitz, HB Fraser 和 DA Petrov。跨 PLK4 的常见变异与人类胚胎中有丝分裂起源非整倍体的发生率增加有关。Science, 348: 235 (2015)。 • T. Babak、B. DeVeale、E. Tsang、Y. Zhou、X. Li、KS Smith、KR Kukurba、R. Zhang、JB Li、D. van der Kooy、SB Montgomery 和 HB Fraser。人类和小鼠组织特异性基因组印迹图谱所反映的遗传冲突。《自然遗传学》,47:544 (2015)。• IM Kaplow、JL MacIsaac、SM Mah、MS Kobor 和 HB Fraser。一种基于池化的方法来映射与 DNA 甲基化相关的遗传变异。《基因组研究》,25:907 (2015)。• RM Agoglia 和 HB Fraser。解开外显子转录增强子的选择来源。《分子生物学与进化》,33:585 (2015)。 • S. Naranjo、JD Smith、CG Artieri、M. Zhang、Y. Zhou、ME Palmer 和 HB Fraser。剖析复杂顺式调控适应的遗传基础。PLoS Genetics,11:e1005751(2015 年)。[PLoS Genetics 研究奖获得者,授予 2015 年在 PLoS Genetics 上发表的最杰出论文。] • AK Tehranchi、M. Myrthil、T. Martin、B. Hie、D. Golan 和 HB Fraser。汇集的 ChIP-seq 将转录因子结合的变化与复杂的疾病风险联系起来。Cell,165: 730 (2016) 。• E. Sharon、LV Sibener、A. Battle、HB Fraser、KC Garcia 和 JK Pritchard。MHC 蛋白编码基因的遗传变异与 T 细胞受体表达偏差有关。Nature Genetics,48: 995 (2016) 。• R. Kita 和 HB Fraser。人类皮肤中阳光照射依赖性基因表达调控的局部适应性。PLoS Genetics,12: e1006382 (2016) 。
Straub, V.J.、Tsvetkova, M. 和 Yasseri, T. 2023。在执行复杂任务时,协调的成本可能超过协作的收益。集体智慧 2(2)。https://doi.org/10.1177/26339137231156912 Tsvetkova, M. 、Vuculescu, O.、Dinev, P.、Sherson, J. 和 Wagner, C. 2022。异质禀赋下的不平等和公平。PLoS ONE 17(10):e0276864。Tsvetkova, M. , M¨uller*, S., Vuculescu, O., Ham, H., 和 Sergeev, R. 2022.社会比较增加了努力和表现的分散性和可预测性。ACM 人机交互论文集 6(CSCW2):536。Kim*, J.E.和 Tsvetkova, M. 2021。网络游戏中的作弊行为通过观察和受害而传播。网络科学 9(4):425–442。Tsvetkova, M. 2021。声誉对网络合作游戏中不平等的影响。英国皇家学会哲学学报 B 376:20200299。Reiss*, M.V.和 Tsvetkova, M. 2020。从 Facebook 个人资料图片了解教育。新媒体与社会 22(3):550–570。Tsvetkova, M. , Wagner, C., 和 Mao, A.2018。社会群体中不平等的出现:网络结构和制度影响合作博弈中的收益分配。PLoS ONE 13(7):e0200965。Tsvetkova, M. , Yasseri, T., Meyer, E., Pickering, J.B., Engen, V., Walland, P., L¨uders, M., Følstad, A., 和 Bravos, G. 2017.理解人机网络:一项跨学科调查。ACM 计算调查 50(1):12。Garc´ıa-Gavilanes, R.、Møllgaard, A.、Tsvetkova, M. 和 Yasseri, T. 2017。记忆永存:理解数字时代的集体记忆。Science Advances 3(4):e1602368。Tsvetkova, M. 、Garc´ıa-Gavilanes, R.、Floridi, L. 和 Yasseri, T. 2017。即使是优秀的机器人也会打架:以维基百科为例。PLoS ONE 12(2):e0171774。Tsvetkova, M. , Garc´ıa-Gavilanes, R., 和 Yasseri, T. 2016.分歧的动态:大规模时间网络分析揭示了在线协作中的负面互动。科学报告 6:36333。Garc´ıa-Gavilanes, R., Tsvetkova, M. , 和 Yasseri, T. 2016.在线关注的动态和偏见:飞机失事案例。皇家学会开放科学 3:160460。Tsvetkova, M. , Nilsson*, O., ¨ Ohman*, C., Sumpter, L., 和 Sumpter, D. 2016.隔离机制的实验研究。EPJ 数据科学 5:4。Tsvetkova, M. 和 Macy, M.W.2015.反社会行为的社会传染。社会科学 2:36–49。Macy, M.W.和 Tsvetkova, M. 2015.噪声的信号重要性。社会学方法与研究 44(2):306–328。Tsvetkova, M. 和 Macy, M.W.2014。慷慨的社会感染。PLoS ONE 9(2): e87275。Tsvetkova, M. 和 Buskens, V. 2013。平等主义网络在社会博弈中的非对称关系协调。复杂系统进展 16(1):1350005。 van der Lippe, T.、Frey, V. 和 Tsvetkova, M. 2013。家务外包:偏好问题?家庭问题杂志 34(12):1574–1597。Shaw, A.K.、Tsvetkova, M. 和 Daneshvar, R. 2011。八卦对社交网络的影响。复杂性 16(4):39–47。
参考文献1。Sofroniew MV。解剖脊髓再生。自然2018; 557:343 - 350。2。Bareyre FM,Kerschensteiner M,Ravereeteau O,Mettenleiter TC,Weinmann O,Schwab,我。受伤的脊髓会自发形成成年大鼠的新载内回路。nat Neurosci 2004; 7:269 - 277。3。Lang C,Guo X,Kerschensteiner M,Bareyre FM。 单外侧重建揭示了脊髓损伤后皮质脊髓重塑的不同阶段。 PLOS ONE 2012; 7:E 30461。 doi:10。 1371 /journal.pone。 0030461。 4。 Bareyre FM,Kerschensteiner M,Misgeld T,Sanes Jr。皮质脊髓道的转基因标记,以监测轴突对脊髓损伤的反应。 nat Med 2005; 11:1355 - 1360。 5。 Steward O,Zheng B,Ho C,Anderson K,Tessier-LavigneM。小鼠背侧皮质脊髓束:之后尾部段的皮质脊髓输入的替代途径Lang C,Guo X,Kerschensteiner M,Bareyre FM。单外侧重建揭示了脊髓损伤后皮质脊髓重塑的不同阶段。PLOS ONE 2012; 7:E 30461。 doi:10。 1371 /journal.pone。 0030461。 4。 Bareyre FM,Kerschensteiner M,Misgeld T,Sanes Jr。皮质脊髓道的转基因标记,以监测轴突对脊髓损伤的反应。 nat Med 2005; 11:1355 - 1360。 5。 Steward O,Zheng B,Ho C,Anderson K,Tessier-LavigneM。小鼠背侧皮质脊髓束:之后尾部段的皮质脊髓输入的替代途径PLOS ONE 2012; 7:E 30461。doi:10。1371 /journal.pone。0030461。4。Bareyre FM,Kerschensteiner M,Misgeld T,Sanes Jr。皮质脊髓道的转基因标记,以监测轴突对脊髓损伤的反应。nat Med 2005; 11:1355 - 1360。5。Steward O,Zheng B,Ho C,Anderson K,Tessier-LavigneM。小鼠背侧皮质脊髓束:
• PLOS One:“人工智能 (AI) 工具和技术对研究或文章内容的贡献必须在方法的专门部分中明确报告,对于缺少方法部分的文章类型,则应在致谢部分中报告。此部分应包括所用工具的名称、作者如何使用工具以及如何评估工具输出的有效性的描述,以及研究、文章内容、数据或支持文件的哪些方面受到 AI 工具使用的影响/生成的明确说明。”