为了减少建筑碳排放,我们使用智能材料,例如 100% 可回收覆层系统以及低碳混凝土和钢材。剩余的碳排放通过购买高质量的碳补偿来解决,以根据 UKGBC 框架在实际完工时实现碳净零排放。
i n [1],已报道了多个芯片在重新分布层(RDL)(RDL)上的设计,材料,过程和组装 - 首先是带有风扇淘汰面板级包装(FOPLP)的第一个基材。RDL-第一个底物[1]在临时玻璃载体上制造,由三个RDL组成,其金属层线宽和间距(L/S)等于2/2、5/5和10/10 m m。由于工艺顺序(2/2 m M金属L/sift,5/5 m m秒和10/10 m m三分之一)在制造RDL-第1个基材时,需要将RDL-FIR-FIRSTRATE转移到另一个临时载体上。然后,将第一个临时玻璃载体拆除,并执行芯片到基底键合,以便可以将芯片直接连接到2/2-M M Metal L/S RDL。然而,由于第二辆载体的粘结和第一个载体的拆卸导致了较大的扭曲,因此焊接质量质量的芯片在RDL底物上的产量非常低。因此,在[1]热压缩键中,一次使用一个芯片。在这项研究中,提出了制造RDL底物的新工艺顺序(10/10 m M Metal L/siftim,第一个,5/5 m m秒和2/2 m m三分之二)。在这种情况下,无需将RDL衬底转移到另一架载体上,然后首先通过小强度的热压缩芯片到rdl-substrate键合,然后立即焊接所有芯片的质量。通过滴测试证明了异质集成包的印刷电路板(PCB)组件的可靠性。讨论了结果和失败分析。
作为IC制造的最后一步,包装是封装芯片并提供最终表单I/O的互连的过程。对越来越高的I/O密度,缩小设备尺寸和较低成本的需求也适用于包装过程。为了实现这些目标,已经开发了各种技术,其中大多数是晶圆级包装(WLP)。与传统的包装过程不同,大多数I/O互连是在晶状体级别进行的,并使用重新分布层(RDL)进行。rdls是铜线和远处形成电气连接的层。取决于应用程序的市场,例如移动,内存或物联网(IoT),粉丝 - 外部晶圆级包装(FOWLP)提供了支持I/O密度要求和良好的RDL线/空间的最有希望的方法。此外,还开发了粉丝范围的面板级包装(FOPLP),以利用规模经济并优化底物利用率。在这项技术中,该过程中使用了矩形基板,而不是像晶圆那样的圆形底物。