气相渗透 (VPI) 是一种聚合后改性技术,可将无机物注入聚合物中以产生具有新特性的有机-无机混合材料。关于 VPI 工艺背后的化学动力学,我们仍有许多未解之谜。本研究旨在更好地了解控制三甲基铝 (TMA) 和 TiCl 4 渗透到 PMMA 中形成无机-PMMA 混合材料的工艺动力学。为了获得深入见解,本文首先研究了根据最近提出的 VPI 反应扩散模型计算出的无机物时空浓度的预测结果。该模型深入了解了 Damköhler 数(反应与扩散速率)和非 Fickian 扩散过程(阻碍),这些过程是由材料从聚合物转变为混合材料而产生的,如何影响无机浓度深度剖面随时间的变化。随后,收集了 90 °C 和 135 °C 下 TMA 和 TiCl 4 渗透 PMMA 薄膜的实验性 XPS 深度剖面。将这些深度剖面在不同渗透时间下的功能行为与各种计算预测进行定性比较,并得出关于每个过程机制的结论。对于本文研究的薄膜厚度(200 nm),TMA 渗透到 PMMA 中似乎从低温(90 °C)下的扩散限制过程转变为高温(135 °C)下的反应限制过程。虽然 TMA 似乎在几个小时内完全渗透到这些 200 nm 的 PMMA 薄膜中,但 TiCl 4 渗透到 PMMA 中的速度要慢得多,即使在前体暴露 2 天后也不会完全饱和。在 90 °C 下的渗透速度非常慢,以至于无法得出关于机制的明确结论;然而,在 135 °C 下,TiCl 4 渗透到 PMMA 中显然是一个反应限制过程,TiCl 4 仅在几分钟内渗透到整个厚度(低浓度),但无机负载在 2 天内以均匀的方式持续增加。近表面与反应限制过程预期的均匀加载偏差也表明 TiCl 4 渗透到 PMMA 中的扩散阻碍很大。这些结果展示了一种新的非原位分析方法,用于研究气相渗透的速率限制过程机制。
在牙科中,甲基丙烯酸甲酯(PMMA)仍然是肢体牙齿和正畸电器的主要材料。尽管它以满足美学期望的能力而受到广泛赞赏,但它在满足修理牙齿的机械先决条件方面却缺乏。这项研究旨在审查有关PMMA材料作为义齿基础的文献,作为知识类型的增强材料的基础及其对义齿基础特性的影响。通过使用PubMed,Scopus,Science Direct,Google Direct,Google Scholar和Wiley Inter Science发动机进行了电子搜索,从2004年至2023年进行了有关PMMA增强材料的影响的全面科学研究。事实证明,已经进行了重大尝试来增强义齿底座的属性,包括热扩散,硬度,表面粗糙度和吸附。在PMMA中为牙齿义齿碱基的增强成分的整合在增强其性质方面既具有生物相容性且有利的态度。本文有可能作为义务应用程序中选择材料的宝贵资源,从而为PMMA及其牙科添加剂增强材料提供了宝贵的见解。
背景:乳牙过早脱落是儿童牙科的常见问题,导致牙弓完整性被破坏。因此,用于维持空间的间隙保持器 (SM) 是必需的。然而,目前制作可拆卸间隙保持器 (RSM) 的方法存在一些局限性。方法:利用扫描技术结合激光医学图像重建获得牙列缺损的数字模型。使用 3 shape 软件设计数字 RSM。它们使用两种方法制造:聚甲基丙烯酸甲酯 (PMMA) 和传统方法。用硅胶替换 RSM 的组织表面和模型之间的间隙,测量最大、平均距离和标准差。使用三维变异分析来测量这些空间。方差检验比较了不同材料之间的距离差异。结果:PMMA RSM 可以很好地拟合模型。PMMA 组的最大距离和平均距离明显小于传统组 (p < 0 0 01)。 PMMA组与传统方法组之间的标准差无显著差异。结论:数字化设计集成的RSM具有良好的适用性,优于传统方法。采用CAD/CAM技术制造的PMMA RSM可以应用于临床。
抽象的聚甲基丙烯酸酯(PMMA)基于光学波导是简单且低成本波导的良好候选者。但是,尚未探索热性能。工作的目的是研究基于PMMA的波导的热性能。波导制造过程是在三个阶段进行的,这些阶段正在对PMMA覆层,核心材料合成和核心材料应用到覆层进行构图。横截面面积为1×1 mm 2的核心图案刻在4厘米长的PMMA板上。不饱和聚酯树脂(UPR)用作核心材料。对温度依赖性损失(TDL),温度工作范围和长期暴露耐用性的表征。用于TDL表征,温度从30°C到75°C不等。同时,对于温度工作范围,波导暴露于循环加热。通过将波导在40°C的温度下浸入蒸馏水288小时来完成热耐用性表征。结果表明,由于温度变化,TDL为0.0235 dB/°C,输出强度的变化很小。温度的最大极限为70°C。长期暴露于40 O C的温度,结果表明波导的性能良好。可以得出结论,对于低于70 O C的温度,波导性能不会受到环境温度的强烈影响。需要进一步的研究以增强其热稳定性并进一步降低温度灵敏度。Jurnal Penelitian Fisika Dan Aplikasinya(JPFA)。关键字:波导;聚甲基丙烯酸酯(PMMA);不饱和聚酯树脂(UPR);热耐用性如何引用:Yulianti I,Insan SMK,Putra NMD,Purwinarko A,Widiarti N和Ngajikin NH。基于光甲基丙烯酸酯(PMMA)的光学波导的热耐用性表征。2024; 14(2):113-124。doi:https://doi.org/10.26740/jpfa.v14n2.p113-124。
这项研究介绍了一种新的方法,用于使用人工神经网络(ANN)和响应表面方法(RSM)进行生物相容性聚乳酸(PLA)/聚甲基甲基丙烯酸酯(PMMA)混合。目标是优化PMMA含量,喷嘴温度,栅格角度和打印速度,以增强形状记忆力和机械强度。材料,PLA和PMMA是融化的,并使用基于颗粒的3D打印机打印4D。差异扫描量热法(DSC)和动态机械热分析(DMTA)评估混合物的热行为和兼容性。ANN模型与RSM模型相比,ANN模型表现出了出色的预测准确性和概括能力。实验结果显示,形状回收率为100%,最终拉伸强度为65.2 MPa,明显高于纯PLA。用优化参数打印的生物螺旋螺旋体展示了出色的机械性能和形状的记忆行为,适用于生物医学应用,例如骨科和牙科植入物。本研究提出了一种用于4D打印PLA/PMMA混合物的创新方法,强调了它们在创造先进的高性能生物相容性材料方面的潜力。
尺寸 反射膜(标准) 反射膜(标准) 反射膜(标准)(不适用于偏振光) 紧固件 自粘式 自粘式 自粘式 100 × 100 毫米 订购代码 BAM01JM 订货编号 BOS R-50 50 毫米 × 25 厘米 订购代码 BAM00WC 订货编号 BOS R-6-0,25 50 毫米 × 45 米 订购代码 BAM00WE 订货编号 BOS R-6-45 50 毫米 × 25 厘米 订购代码 BAM00WF 订货编号 BOS R-7-0,25 50 毫米 × 22 米 订购代码 BAM00WH 订货编号 BOS R-7-22 50 毫米 × 25 厘米 订购代码 BAM00WJ 订货编号 BOS R-8-0,25 25 毫米 × 22 米 订购代码 BAM00WK 订货编号 BOS R-8-22 材料 PMMA PMMA PMMA 特殊功能 不适用于偏振光 温度范围 –20...+60 °C –20...+60 °C –20...+60 °C
解释无机成分深度分布以了解气相渗透过程中的限速步骤 Shuaib A. Balogun 1、Yi Ren 2、Ryan P. Lively 2 和 Mark D. Losego 1,* 1 佐治亚理工学院材料科学与工程学院,美国佐治亚州亚特兰大 2 佐治亚理工学院化学与生物分子工程学院,美国佐治亚州亚特兰大 *电子邮件:losego@gatech.edu 摘要 气相渗透 (VPI) 是一种聚合后改性技术,它将无机物注入聚合物中以创建具有新性能的有机-无机杂化材料。关于 VPI 工艺背后的化学动力学,我们仍有许多未解之谜。本研究的目的是更好地了解控制三甲基铝 (TMA) 和 TiCl 4 渗透到 PMMA 中形成无机-PMMA 杂化材料的工艺动力学。为了获得深刻见解,本文首先研究了根据最近提出的 VPI 反应扩散模型计算出的无机物时空浓度的预测结果。该模型深入了解了材料从聚合物转变为混合物时产生的 Damköhler 数(反应与扩散速率)和非 Fickian 扩散过程(阻碍)如何影响无机浓度深度剖面随时间的变化。随后,收集了 90 °C 和 135 °C 下 TMA 和 TiCl 4 渗透 PMMA 薄膜的实验性 XPS 深度剖面。将这些深度剖面在不同渗透时间下的功能行为与各种计算预测进行定性比较,并得出关于每个过程机制的结论。对于本文研究的薄膜厚度(200 nm),TMA 渗透到 PMMA 中似乎从低温(90 °C)下的扩散限制过程转变为高温(135 °C)下的反应限制过程。 TMA 似乎可以在几个小时内完全渗透这些 200 nm 的 PMMA 薄膜,但 TiCl 4 渗透到 PMMA 中的速度要慢得多,即使在前体暴露 2 天后也未完全饱和。90 °C 下的渗透速度非常慢,无法得出有关机理的明确结论;然而,在 135 °C 下,TiCl 4 渗透到 PMMA 中显然是一个反应限制过程,TiCl 4 仅需几分钟即可渗透整个厚度(低浓度),但无机负载在 2 天内以均匀的方式持续增加。近表面与反应限制过程预期的均匀负载的偏差也表明 TiCl 4 渗透到 PMMA 中的扩散阻碍很大。这些结果展示了一种新的非原位分析方法,用于研究气相渗透的限速过程机制。
探索微塑料 (MP) 对陆地系统影响的科学研究仍处于早期阶段,但已证实接触塑料会对多种生物产生各种有害健康影响。虽然最近的研究表明单一 MP 聚合物对蜜蜂具有毒理学影响,但不同聚合物组合及其对认知和行为表现的影响仍然未知。为了填补这一知识空白,我们研究了 MP 单独和组合对蜜蜂 Apis mellifera 认知能力的影响。我们评估了三种不同浓度(0.5、5 和 50 mg/L -1 )的聚苯乙烯 (PS) 和有机玻璃 (PMMA) MP 以及两者的组合 (MIX) 的急性口服毒性,并分析了它们对蔗糖反应性和食欲嗅觉学习和记忆的影响。我们还利用双光子荧光显微镜 (TPFM) 结合优化版 DISCO 透明化技术,探索了这些 MP 是否能够到达昆虫大脑并积聚在大脑中。结果表明,PS 降低了觅食者对蔗糖的反应性,而 PMMA 没有显著影响;然而,PMMA 和 PS 的组合对蔗糖反应性有明显的负面影响。此外,PMMA 和 PS 以及 MIX 都会损害蜜蜂的学习形成和记忆检索,其中 PS 的影响最为严重。关于我们用 TFPM 进行的大脑成像分析,我们发现仅口服三天后,MP 就可以渗透并积聚在大脑中。这些结果引起了人们对 MP 可能对中枢神经系统造成的潜在机械、细胞和生化损伤的担忧。
抽象目标牙齿藻酸盐是牙科中用于再现内部和外牙性结构的印象材料之一。藻酸盐是一种非常实惠且易于使用的材料,但是由于其泪液强度较低,因此在准确性方面仍然存在局限性。提高藻酸盐撕裂强度的一种方法是添加填充剂。聚甲基甲基丙烯酸酯(PMMA)是有机填充剂的一个例子,可以用作有效提高尺寸稳定性的替代增强。因此,这项研究的目的是评估添加PMMA作为有机纤维的藻酸盐的泪液强度。材料和方法这项实验研究由四组样品组成。样品A作为对照组,而样本B包括处理的样品,其添加了3WT%(B1),5wt%(B2)和7WT%(B3)的样品。每组有五个样本。使用通用测试机根据ISO标准21563:2021进行泪强度测试,然后使用扫描电子显微镜(SEM)和傅立叶变换Infra-Red(FTIR)光谱进行表征。统计分析然后在Tukey的测试后通过单向方差分析(ANOVA)评估泪强度结果(p <0.05)。结果对照样品(a)的泪强度为0.540 N/mm。同时,处理过的样品的泪强度为0.612 N/mm(B1),0.663 N/mm(B2)和0.596 N/mm(B3)。使用PMMAFILLER的对照与处理的样品之间存在差异(P <0.05)。这些结果由SEM和FTIR结果支持与藻酸盐多孔结构的物理闭合或阻断其功能组的略有变化有关。结论将PMMAFILER添加到牙齿藻酸盐中,随着泪强度的提高提供了增强。这可能会影响印象的准确性,尤其是当材料从口服结构中迅速去除时。其他研究可能会进一步评估生物相容性属性。