摘要:脱碳需求要求建立近 100% 的可再生电力,从而对电网形成 (GFM) 能力提出要求。前述范式从同步交流系统转变为基于转换器的系统,该系统需要在提供 GFM 服务的同时保持稳定和自同步。然而,正如本文在引言中分析的那样,实现这些目标不可避免地需要在风力涡轮机中实现 PLL 控制器和储能,而风力涡轮机不适合在弱能量系统中运行。为了解决这个问题,提出了一种新颖的电网形成方法。建议的想法是在电网侧转换器中创建一个模拟惯性响应的直流电压控制器,并在发电机侧转换器中应用转子动能存储 (RKES) 控制器。此外,提出了一种 RKES 控制器和传统低电压穿越 (LVRT) 的协调控制器,以提高动态性能并在瞬态过程中保持电网形成能力。提供广泛的建模、基于半物理平台的实验结果和实际风电场示范项目来验证所提出的控制方法。结果证明了所提出的方法应用于未来 100% 可再生电力的有效性。
平行谐振永久性磁铁同步发电机(PMSG)系统,该系统由柴油发动机组成,带有谐振平行电容器的PMSG和二极管全波电流,可能可能应用于串联混合车辆牵引系统,这是由于其高成本和低成本和低成本和低成本而导致的。通常,使用脉冲宽度调制(PWM)转换器控制串联混合车辆牵引系统中的发电系统。但是,无法使用PWM转换器调整并联谐振PMSG混合牵引系统中的功率发电系统,并且需要采用新的动力生成控制方法。尚未开发一种考虑电池恶化,发动机启动数量和燃油经济性的适当发电控制方法。因此,本研究提出了一种适用于串联混合车辆牵引系统的平行谐振PMSG系统的发电控制方法。
为了在可接受的仿真时间内获得准确的寿命评估结果,以满足全生命周期设计标准,本文提出了一种基于循环神经网络 (RNN) 的模型来替代 Simulink 模型。首先建立永磁同步发电机 (PMSG) 的平均开关 (AS) 模型和平均基波 (AF) 模型来计算累积损伤。然后,在相同的任务概况下,计算并比较 AS 和 AF 模型的结温、雨流计数和累积损伤。可以看出,AS 模型可以更准确地计算组件的可靠性,因为该模型既考虑了负载变化引起的大热循环,也考虑了基波交流电流引起的小热循环。然而,与 AF 模型相比,它耗费更多时间。为此,提出使用 RNN 模型来替代系统可靠性评估程序中最耗时的部分。借助所提出的模型,与 Simulink 模型相比,可以大大减少所耗时间。最后,通过一个1小时的案例验证了RNN模型的有效性。测试用例的平均绝对百分比误差(MAPE)为0.51%,RNN模型得出结果的时间小于1秒。此外,还实施了一个年度案例来验证RNN模型,全年平均MAPE为0.78%。