囊性纤维化 (CF) 是由 CF 跨膜传导调节器 (CFTR) 基因突变引起的。我们试图通过系统性递送肽核酸基因编辑技术(由生物相容性聚合物纳米颗粒介导)来纠正 F508del CF 致病突变引起的多器官功能障碍。我们在气液界面生长的 F508del 小鼠的原代鼻上皮细胞中证实了体外表型和基因型修饰,并在静脉内递送后在 F508del 小鼠体内证实了表型和基因型修饰。体内治疗导致上皮细胞中 CFTR 功能部分增强(通过原位电位差和 Ussing 室测定测量)以及气道和胃肠道组织中的 CFTR 得到纠正,并且没有高于背景的脱靶效应。我们的研究表明系统性基因编辑是可能的,更具体地说,静脉内递送旨在纠正 CF 致病突变的 PNA NP 是改善多个受影响器官中 CF 的可行选择。
通过多米尼科·蒙特萨诺(Domenico Montesano)49,80131 Naples,意大利B 891,BB生物学,化学和药物科学和技术系(RUISCEF) -Cnr, Ugo La Malfa 153, Palermo 90146, Italy D University of Granada, Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, 18071 Granada, Spain and Andalusian Institute of Earth Sciences, Csic-Ugr, 18100 Armilla, Granada, Spain Fo Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, 1301 Memorial Drive,Coral Gables 33146-0431,佛罗里达州佛罗里达州G,美国分子医学和医学生物技术部,通过塞尔吉奥·潘西尼(Sergio Pansini)5,80131 naples,意大利h意大利化学科学系,Viale Andrea Doria 6,95125 CATANIA,意大利,意大利,意大利,意大利,意大利,意大利,通过多米尼科·蒙特萨诺(Domenico Montesano)49,80131 Naples,意大利B 891,BB生物学,化学和药物科学和技术系(RUISCEF) -Cnr, Ugo La Malfa 153, Palermo 90146, Italy D University of Granada, Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, 18071 Granada, Spain and Andalusian Institute of Earth Sciences, Csic-Ugr, 18100 Armilla, Granada, Spain Fo Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, 1301 Memorial Drive,Coral Gables 33146-0431,佛罗里达州佛罗里达州G,美国分子医学和医学生物技术部,通过塞尔吉奥·潘西尼(Sergio Pansini)5,80131 naples,意大利h意大利化学科学系,Viale Andrea Doria 6,95125 CATANIA,意大利,意大利,意大利,意大利,意大利,意大利,通过多米尼科·蒙特萨诺(Domenico Montesano)49,80131 Naples,意大利B 891,BB生物学,化学和药物科学和技术系(RUISCEF) -Cnr, Ugo La Malfa 153, Palermo 90146, Italy D University of Granada, Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, 18071 Granada, Spain and Andalusian Institute of Earth Sciences, Csic-Ugr, 18100 Armilla, Granada, Spain Fo Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, 1301 Memorial Drive,Coral Gables 33146-0431,佛罗里达州佛罗里达州G,美国分子医学和医学生物技术部,通过塞尔吉奥·潘西尼(Sergio Pansini)5,80131 naples,意大利h意大利化学科学系,Viale Andrea Doria 6,95125 CATANIA,意大利,意大利,意大利,意大利,意大利,意大利,通过多米尼科·蒙特萨诺(Domenico Montesano)49,80131 Naples,意大利B 891,BB生物学,化学和药物科学和技术系(RUISCEF) -Cnr, Ugo La Malfa 153, Palermo 90146, Italy D University of Granada, Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, 18071 Granada, Spain and Andalusian Institute of Earth Sciences, Csic-Ugr, 18100 Armilla, Granada, Spain Fo Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, 1301 Memorial Drive,Coral Gables 33146-0431,佛罗里达州佛罗里达州G,美国分子医学和医学生物技术部,通过塞尔吉奥·潘西尼(Sergio Pansini)5,80131 naples,意大利h意大利化学科学系,Viale Andrea Doria 6,95125 CATANIA,意大利,意大利,意大利,意大利,意大利,意大利,通过多米尼科·蒙特萨诺(Domenico Montesano)49,80131 Naples,意大利B 891,BB生物学,化学和药物科学和技术系(RUISCEF) -Cnr, Ugo La Malfa 153, Palermo 90146, Italy D University of Granada, Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, 18071 Granada, Spain and Andalusian Institute of Earth Sciences, Csic-Ugr, 18100 Armilla, Granada, Spain Fo Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, 1301 Memorial Drive,Coral Gables 33146-0431,佛罗里达州佛罗里达州G,美国分子医学和医学生物技术部,通过塞尔吉奥·潘西尼(Sergio Pansini)5,80131 naples,意大利h意大利化学科学系,Viale Andrea Doria 6,95125 CATANIA,意大利,意大利,意大利,意大利,意大利,意大利,
作为新的治疗方式,需要精确靶向 DNA 和 RNA 序列的调控工具。PNA(图 1 A、B)[ 1 ] 最初由 Nielsen 等人于 1991 年开发,在靶向疾病相关 DNA 和 RNA 序列方面显示出巨大潜力。PNA 可以与天然 DNA/RNA 序列配对,形成 PNA-DNA 和 PNA-RNA 双链。与具有三个或四个手性中心的 DNA/RNA 糖环部分相比,典型的 PNA 没有环结构或手性中心。相对灵活且电中性的骨架使 PNA 有利于通过 Watson-Crick 碱基配对识别具有平行和反向平行链取向的 DNA/RNA 序列,并具有增强的结合亲和力。此外,PNA 通过三链结构形成识别 DNA 和 RNA 序列(例如,PNA • DNA-PNA、PNA • RNA-PNA、PNA • RNA-RNA 和 PNA • DNA-DNA 三链;此处 - 和 • 分别表示 Watson-Crick 和 Hoogsteen 对)。通常,PNA 与蛋白质没有显著结合,因此无免疫原性,并且对蛋白酶和核酸酶具有抗性。
摘要:神经保护性药物向眼后部分递送是抵消视力丧失的主要挑战。这项工作着重于基于聚合物的纳米载体的开发,该纳米载体专门设计用于靶向后眼。聚丙烯酰胺纳米颗粒(ANP)合成和表征,并且通过与花生凝集素(ANP:PNA)和Neurotrophinnerve nerve nerve nerve nerve生长因子(ANP:pna:pna:pna:pna:ngf)结合,利用了高结合效率来获得眼部靶向和神经保护能力。使用氧化应激诱导的视网膜变性模型评估了ANP:PNA:NGF的神经保护活性。纳米成型后,NGF改善了玻璃体内注射过氧化氢后斑马鱼幼虫的视觉功能,并伴随着视网膜中凋亡细胞的数量减少。此外,ANP:PNA:NGF抵消了暴露于香烟烟雾提取物(CSE)的斑马鱼幼虫中的视觉行为受损。总的来说,这些数据表明我们的聚合物药物输送系统代表了针对视网膜变性实施目标治疗的有前途的策略。
尽管基于 CRISPR-Cas9 的技术得到了快速而广泛的应用,但用于调节剂量、时间和精度的便捷工具仍然有限。基于使用合成肽核酸 (PNA) 以异常高的亲和力结合 RNA 的方法,我们描述了向导 RNA (gRNA) 间隔区靶向或“反间隔区”PNA,作为以序列特异性方式调节细胞中 Cas9 结合和活性的工具。我们证明 PNA 可以快速有效地以低剂量靶向复合 gRNA 间隔区序列,并且不受序列选择性 Cas9 抑制的设计限制。我们进一步表明,短 PAM 近端反间隔区 PNA 可实现有效的切割抑制(减少超过 2000 倍),并且 PAM 远端 PNA 可改变 gRNA 亲和力以促进靶向特异性。最后,我们应用反间隔物 PNA 来对两个 dCas9 融合系统进行时间调控。这些结果提出了一种新颖的合理核蛋白工程方法,并描述了一种可快速实施的 CRISPR-Cas9 调节反义平台,以提高应用的时空多功能性和安全性。
摘要:不寻常的核酸结构是内源性修复的显著触发因素,可在序列特异性环境中发生。肽核酸 (PNA) 依靠这些原理实现非酶促基因编辑。通过在基因组内形成高亲和力异质三链结构,PNA 已被用于纠正多种人类疾病相关突变,且对靶标的影响较低。分子设计、化学修饰和递送方面的进步使得 PNA 能够在体内系统应用,从而在临床前小鼠模型中实现可检测的编辑。在 β 地中海贫血模型中,接受治疗的动物表现出临床相关的蛋白质恢复和疾病表型改善,表明 PNA 有可能用于治疗单基因疾病。本综述讨论了 PNA 技术的原理和进展及其在基因编辑中的应用,重点是结构生物化学和修复。
摘要:肽核酸(PNA,具有肽骨架而非磷酸核糖骨架的核酸类似物)已成为反基因或反义治疗、剪接调节剂或基因编辑中的有前途的化学药剂。与 DNA 或 RNA 药剂相比,它们的主要优点是生化稳定性和整个骨架上没有负电荷,导致与它们杂交的链的静电相互作用可以忽略不计。因此,PNA 链与 DNA 或 RNA 链的杂交会导致更高的结合能和熔化温度。然而,缺乏天然转运体需要形成含 PNA 的嵌合体或制定纳米特定细胞递送方法。在这里,我们着手探索在诊断应用中使用基于 PNA 的成像剂所取得的进展,并重点介绍选定的发展和挑战。■ 简介
RNA 疗法已成为治疗多种疾病的下一代疗法。与小分子不同,RNA 靶向药物不受蛋白质上结合口袋可用性的限制,而是利用沃森-克里克 (WC) 碱基配对规则来识别靶 RNA 并调节基因表达。反义寡核苷酸 (ASO) 是一种治疗由基因改变引发的疾病的强大治疗方法。ASO 识别靶 RNA 上的同源位点以改变基因表达。九种单链 ASO 已获准用于临床,几种候选药物正在针对罕见疾病和常见疾病进行后期临床试验。已经研究了几种化学修饰,包括硫代磷酸酯、锁核酸、磷二酰胺、吗啉和肽核酸 (PNA),以实现有效的 RNA 靶向。PNA 是合成的 DNA 模拟物,其中脱氧核糖磷酸骨架被 N-(2-氨基乙基)-甘氨酸单元取代。PNA 的中性假肽骨架有助于增强结合亲和力和高生物稳定性。 PNA 与靶 RNA 中的互补位点杂交,并通过基于空间位阻的机制发挥作用。在过去的三十年中,人们探索了各种 PNA 设计、化学修饰和递送策略,以证明其作为有效且安全的 RNA 靶向平台的潜力。本综述涵盖了 PNA 介导的编码和非编码 RNA 靶向在众多治疗应用中的进展。
塞内加尔的药房国家批准1(PNA)战略发展计划(2021-2025)旨在确保高质量药物和全国其他基本健康商品的可用性和可及性。该计划的重点是四个目标:1)巩固PNA的核心业务,以定期为医疗机构提供基本健康商品,2)优化支持功能对绩效和高质量服务的贡献,3)实施重大改革,4)引入主要的重大创新。全球健康供应链技术援助(GHSC-TA)法语任务订单(TO)支持的卫生计划和塞内加尔供应链系统的三个机构 - De la Pharmacie et duMédicament2(dpm),Laboratoire National DeContrôleDesMédicements3,以及PNA,以满足这些目标。
摘要:Dnazymes已被广泛用于许多传感和成像应用中,但是自1994年发现以来,很少使用基因工程,因为它们的底物范围主要限于单链DNA或RNA,而遗传信息则存储在双链DNA(DSDNA)中。为了克服这一主要局限性,我们在这里报告了肽核酸(PNA)辅助双链DNA通过dnazymes(Panda)辅助的DNA迹象,这是将Dnazyme活性扩展到DSDNA的第一个例子。我们表明,熊猫在有效划痕或导致靶dsDNA上有双链破裂是可以编程的,靶DsDNA模仿了蛋白质核酸酶,并且可以充当分子克隆中的限制酶。除了比蛋白质酶小得多,在我们测试的条件下,熊猫还具有更高的序列保真度,这证明了其作为基因工程和其他生化应用的新型替代工具的潜力。