DAC(数模转换器)在生物医学仪器、通信系统、机器人等各个领域发挥着重要作用。通常,当现实世界信号时,DAC 会并入大多数数字系统中。现实世界信号(如压力信号、声波、温度读数或图像)通过模数转换器 (ADC) 转换为数字形式。经过处理后,这些信号使用 DAC 转换回模拟信号。DAC 是驱动音频 - 视频应用、直流、交流或伺服电机控制、射频收发器或各种工业温度控制器等设备的电路的必备条件。刺激神经组织的共同目标位于中枢神经系统和周围神经系统 (PNS) 内。中枢神经系统 CNS 主要关注神经元群的正常运作。对神经元群的刺激是为了探测所述神经元群。刺激还利用神经假体装置为其用户提供感官反馈。临床上,为了缓解帕金森病和癫痫的症状,人们使用中枢神经系统刺激。同样,对于假肢的感觉反馈,周围神经系统 (PNS) 刺激也很有用 [1,20]。在最近的进展中,这种模拟被应用于高血压和炎症性疾病的治疗 [2,20]。现代 VLSI 技术可以实现小型化和完全植入式神经刺激器电路,同时允许设计人员集成大量通道,并允许增加功能。增加的功能使设计人员能够在不影响设备尺寸的情况下实现更高的刺激效果。修订稿于 2020 年 1 月 15 日收到。
中枢神经系统 (CNS)(大脑和脊髓)和周围神经系统 (PNS) 之间存在关键差异,例如神经胶质细胞类型、是否有血脑屏障保护、突触连接模式等。然而,这两个神经系统分支之间还有许多相似之处,包括神经元结构和功能、神经免疫和神经血管相互作用,以及或许最重要的是神经可塑性(包括神经元存活、神经突生长、突触形成、神经胶质生成等过程)和神经退行性(神经元死亡、周围神经病变,如轴突病变和脱髓鞘)之间的平衡。本文汇集了有关 CNS 和 PNS 之间神经系统健康和疾病的共同机制的最新研究证据,特别是肥胖和糖尿病等代谢疾病。这一证据支持了以下观点:神经系统的两部分密切相关,之前研究不足的中枢神经变性或周围神经变性情况实际上可能通过共同的遗传和细胞机制同时在整个神经系统中表现出来。由于大脑研究和周围神经研究之间的研究孤岛以及神经科学研究领域过分强调大脑,这一主题尚未得到充分探索。在人体的这一神经系统中,神经元如何保持健康而不是遭受损伤和疾病可能存在共同且相互关联的机制——这为理解神经疾病病因和未来神经保护疗法的开发提供了新的机会。
抽象周围神经系统(PNS)和中枢神经系统(CNS)啮齿动物髓素(由不同的细胞类型产生)具有共同的形态和功能特征,尽管它们的主要积分膜蛋白是完全不同的。两种类型的髓磷脂how- ever,包含四种髓磷脂碱性蛋白(Mbps),它们具有相似的免疫化学和电泳特性。我们已经分离并表征了与大鼠mRNA相对应的cDNA克隆,这些cNS和PNS髓磷脂中发现的小Mbps(SMBP)。对这些克隆的序列分析表明,神经系统的两个分裂中的SMBP均由相同的核苷酸序列编码,这表明它们是在少突胶质细胞和Schwann细胞中表达的相同基因的产物。与CNS SMBP cDNA作为探针中的点印刷杂交实验,结果表明,在CNS髓磷脂中,MBP mRNA水平高20倍,而总脑干mRNA中的MBP mRNA水平高20倍。还发现,在含有少突drocytes和schwann细胞的视神经和坐骨神经中,MBP mRNA的水平分别高(分别为4倍和2倍)。印迹杂交实验表明,源自大鼠SMBP cDNA的编码区域的探针杂交与人视神经中存在的同源mRNA(= 2.6千行酶),该探针无法检测到从3'未转移的区域中得出的探针。这种编码区域序列的保守性与两种物种中MBP报告的高度同质氨基酸序列一致。
摘要:背景:心率变异性(HRV)是评估自主功能的可靠且方便的方法。横断面研究已经建立了HRV与认知之间的联系。lon-gitudinal研究是一个新兴的研究领域,具有重要的临床意义。但是,它们尚未成为系统审查的目标。因此,这项系统综述的目的是研究HRV与认知研究中的关联。方法:审查是根据系统审查和荟萃分析(PRISMA)指南的首选报告项目进行的。从最早的可用日期到2023年6月26日,搜索了embase,psycinfo和PubMed数据库。如果研究涉及成年人的受试者,并评估了HRV与认知之间的纵向关联,则包括研究。通过纽卡斯尔 - 奥塔瓦(Newcastle -Ottawa)量表评估了偏见的风险,以进行队列研究。结果是在叙事上提出的。结果:在筛选的14,359个记录中,该系统审查中包括12项研究,共有24,390名参与者。从2020年开始发表了三分之二的研究。所有研究发现HRV与认知之间存在纵向关系。在较高的副交感神经系统(PNS)活性和更好的认知之间存在一致的联系,以及较高的交感神经系统活动与较差的认知之间的某些关联。此外,较高的PNS活动持续预测了更好的执行功能,而情节记忆和语言的数据更少和/或有争议。结论:我们的结果支持HRV作为未来认知的生物标志物的作用,并可能是改善认知的治疗靶标。他们将需要通过进一步的更全面的研究确认,包括明确的非HRV交感神经措施和荟萃分析。
摘要 脑机接口 (BCI) 是一种允许人们绕过周围神经系统 (PNS) 的自然神经肌肉和激素输出与环境互动的系统。这些接口记录用户的大脑活动并将其转换为外部设备的控制命令,从而为 PNS 提供额外的人工输出。在这一框架中,基于 P300 事件相关电位 (ERP) 的 BCI 已被证明特别成功和强大,ERP 表示特定事件或刺激后从大脑记录下来的电反应。通过分类算法确定 EEG 特征中是否存在 P300 诱发电位。线性分类器(例如逐步线性判别分析和支持向量机 (SVM))是 ERP 分类中最常用的判别算法。由于 EEG 信号的信噪比较低,因此在对信号进行分类之前,需要执行多个刺激序列(又称迭代)并取平均值。然而,虽然增加迭代次数可以提高信噪比,但也会减慢该过程。在早期的研究中,迭代次数是固定的(无停止环境),但最近文献中提出了几种提前停止策略,以便在满足某个标准时动态中断刺激序列,以提高通信速率。在这项工作中,我们探索了如何通过结合优化和机器学习来提高基于 P300 的 BCI 中的分类性能。首先,我们提出了一个新的决策函数,旨在提高无停止和提前停止环境中的分类性能(准确度和信息传输速率)。然后,我们提出了一个新的 SVM 训练问题,旨在促进目标检测过程。我们的方法在几个公开可用的数据集上被证明是有效的。
事实证明,因果关系的概率在现代决策中至关重要。本文涉及估计治疗和效果不是二元时因果关系概率的问题。珍珠定义了因果关系的二进制概率,例如必要性和充分性的概率(PNS),足够的概率(PS)和必要性的概率(PN)。tian和Pearl随后使用实验和观察数据得出了这些因果关系的尖锐边界。在本文中,我们定义并为各种因果关系的概率提供了理论上的界限,并提供了多价处理和效果。我们进一步讨论了示例,我们的界限指导实际决策并使用仿真研究来评估各种数据组合的界限的信息。
引言慢性炎症性脱髓鞘性多发性神经根神经病 (CIDP) 是一种可治疗的周围神经系统 (PNS) 慢性自身免疫性疾病,也是慢性自身免疫性神经病 (AN) 中最常见的一种。CIDP 的发病机制涉及自身反应性 T 细胞、自身抗体、补体、介导脱髓鞘和继发性轴突变性的活化巨噬细胞(图 1)。只有 75-80% 的 CIDP 患者对一线治疗(免疫球蛋白、皮质类固醇、血浆置换)有临床意义的反应。1,2 人们一致认为需要更有效的免疫疗法,特别是对于对一线治疗无反应或病程进展迅速、需要长期免疫抑制治疗且副作用较小的患者。
摘要:从几十年的广泛研究,与神经炎症有关的关键遗传元素和生化机制中出现了,已被描述,这极大地有助于我们对神经退行性疾病(NDDS)的理解。在这个MinireView中,我们主要从过去三年开始讨论数据,强调了与神经炎症有关的两种主要细胞类型的关键作用和机制。审查还强调了早期发作,神经炎症的关键影响及其在NDDS发病机理中的动态相互作用的扩展过程。面对这些复杂的挑战,我们引入了支持使用间充质干细胞的无细胞治疗的引人注目的证据。这种治疗策略包括对小胶质细胞和星形胶质细胞的调节,周围神经细胞炎症的调节以及针对专门为NDD设计的靶向抗炎干预措施,同时还讨论了工程和安全考虑。这种创新的治疗方法精巧地调节了周围和神经系统的免疫系统,重点是实现出色的穿透力和靶向递送。这篇评论提供的见解对更好地理解和管理神经炎症具有重大影响。关键词:神经退行性疾病,神经炎症,间充质干细胞,外泌体神经退行性疾病(NDDS)在全球范围内变得越来越普遍。在大脑衰老的各种标志中,神经炎症引起了极大的关注[1]。这些疾病代表了主要与年龄相关并逐渐损害神经元功能的异质性神经系统疾病。虽然这些疾病可以在中枢神经系统(CNS)或周围神经系统(PNS)中表现出来,但新兴研究表明,PNS的病理学可能在CNS参与之前几年之前,可能最终导致老年人的神经退行性疾病。
神经系统(大脑和脊髓)、颅骨和脑膜的大体解剖学 1 - 脑室系统、脑脊液和神经系统的血液供应 2 - 神经系统组织学(中枢和周围神经系统) 3 - 中枢神经系统的功能解剖学 4 - 脑循环和脑脊液形成的生理学 5 - 神经系统的发育 头部和颈部的发育 6 - 细菌性脑膜炎和脑脓肿 7 - 病毒性脑膜炎和病毒性脑炎破伤风和肉毒杆菌中毒 8 - 脑神经和脊神经的主要功能 9 - 大脑神经递质的特殊代谢:类型和生命周期 10 - 脑干解剖学(延髓,Pons,MB) 11 - 自主神经系统:- 交感神经和副交感神经。 - 胆碱能和肾上腺素能。 - 肾上腺素和乙酰胆碱的生命周期 12 -