PROTAC 提供了一种新机制,与传统的小分子抑制剂相比,它们可以高选择性地显著降低细胞中目的蛋白 (POI) 的利用度,同时大大降低副作用 [1]。第一个 PROTAC 由 Craig M. Crews 于 2001 年开发,自这一突破以来,该领域在过去二十年中得到了迅速发展 [2]。PROTAC 具有由三个元素组成的双功能结构——E3 泛素连接酶配体 [3,4]、POI 配体和连接两个配体的连接区。POI 配体通过与目的蛋白结合并将其隔离到连接的 E3 配体上,选择性地靶向并“劫持”目的蛋白。然后,E3 连接酶配体从胞质中募集 E3 泛素连接酶到含有结合目标蛋白的 PROTAC 复合物中,连接区将 POI 和 E3 连接酶配体结合在一起 [ 5 ]。因此,目标蛋白和 E3 连接酶被人为地拉近,从而允许蛋白靶标进行多泛素化,随后被蛋白酶体破坏(图 1 )。PROTAC 可用于破坏任何蛋白靶标,甚至是非天然泛素化的蛋白。文献表明,使用 PROTAC 技术可以降解 50 多种不同的靶蛋白。目前的靶标包括蛋白激酶、核受体和转录因子,还有更多潜在靶标正在开发中 [ 6 ]。本文涵盖的概念
蛋白水解靶向嵌合体 (PROTAC) 已被开发为一种有用的靶向蛋白质降解技术。双功能 PROTAC 分子由目标蛋白质 (POI) 的配体(主要是小分子抑制剂)和 E3 泛素连接酶 (E3) 的共价连接配体组成。与 POI 结合后,PROTAC 可以募集 E3 进行 POI 泛素化,然后进行蛋白酶体介导的降解。PROTAC 补充了基于核酸的基因敲除/敲除技术,用于靶向蛋白质减少,并可以模拟药理学蛋白质抑制。迄今为止,已成功开发出靶向约 50 种蛋白质的 PROTAC,其中许多是经过临床验证的药物靶标,其中几种正在进行癌症治疗的临床试验。本文回顾了 PROTAC 介导的癌症(特别是血液系统恶性肿瘤)中关键癌蛋白的降解。总结了这些PROTAC的化学结构、细胞和体内活性、药代动力学和药效学。此外,还讨论了PROTAC技术在癌症治疗中的潜在优势、挑战和前景。
输配电设备通常是可再生能源开发中最有价值的基础设施。对于可再生能源发电厂中典型的中型到大型发电项目(容量为 1 MW 以上),与电网的可行互连点 (POI) 的距离以及电网在不触发重大升级成本的情况下容纳新可再生能源发电的能力是项目可行性的最重要因素。除了与 POI 的距离和变电站的状况外,其他现有电网设备(包括变压器和重合器)的状况也很重要。2 即使由于该厂区以前的工业或采矿活动停止,电网设备使用不足或处于闲置状态,但如果它处于工作状态或可以随时翻新,它仍然很有价值。
这项工作涉及更改上述进行的,以首先引入以Valsalva的乳房以及上升主动脉的能力为特征的正确几何形状。对于后者,有必要对formlabs的弹性50a树脂进行完整的表征,以获得精制的性质。特别是进行了各种测试,包括牵引测试以表征弹性模块和循环测试,以验证管子是否可以进行测试。收集的结果用于产生电缆的电缆,并通过通过3D打印制成的Valsalva的乳房的几何形状。脉冲测试:力学,聚合物和生物学;在标准构型中,带有带有几何形状的刚性管,然后带有带有几何形状的导管。
作者:HMCJ Martinez · 被引用 2 次 — 以下是从受伤点 (POI) 到角色 3 的连续护理过程中对特定化学制剂的医疗管理的回顾。
Halo-Flipper是一种荧光探针,专门标记Halotag™*,并报告膜张力通过其荧光寿命变化而变化。它包含氯烷烃Halotag™*配体以及一个束缚的Flipper-TR荧光团,该荧光团感受着围绕Halotag™*蛋白质的脂质双层膜的组织变化。晕圈是可渗透的,自发标记表达细胞的挂钩,仅当插入脂质膜中时才荧光。它具有广泛的吸收和发射光谱,激发通常可以用488nm激光器进行,而发射则在575至625nm之间收集。这是精确定位细胞内曲面膜张力荧光团的理想工具。氯烷烃(CA)是自标签标签Halotag™*的底物。与CA衍生物反应后,Halotag™*与底物形成共价键。它允许将荧光标签永久连接到任何感兴趣的蛋白质(POI)(POI),以HALOTAG™*融合
电网。3 这些输电设施称为 PBI,将建在 SAA 1.0 中确定的登陆点 Sea Girt 国民警卫队训练中心和 PJM 高压电网的中标互连点(“POI”)之间,即 Larrabee 收集站(“LCS”)。PBI 将通过整合通往 POI 的海岸通道和陆上电缆走廊,最大限度地减少对环境和社区的影响。最终,SAA 1.0 项目授予设想 PBI 将在后续一代招标中采购,后来确定为董事会的第三次 OSW 招标(“第三次招标”)。然而,第三次招标招标指导文件(“S3 SGD”)表明 SAA 可能会在以后修改以包括 PBI。4