本研究探讨了在降雨模型中使用分数泊松和分数伽马模型的好处,突出了它们在处理零膨胀数据,减少过度分散并提供更大的灵活性和准确性和准确性方面的优势。这项研究的第二部分研究了海洋生态系统与全球气候变化之间的动态相互作用。它专注于浮游植物在氧气产生中的作用以及变暖水对这种微妙平衡的影响。通过采用整合微分方程和布朗运动的数学模型,该研究提供了一个全面的框架,以了解不同的氧气产量如何影响海洋生态系统的可持续性。最后,该研究将小部分的布朗运动纳入建模浮游生物 - 氧气动力学,以解决传统布朗运动的局限性。此方法捕获远程
在这项工作中,我们对我们称为泊松层的印度bu效过程进行了全面的贝叶斯后验分析,该过程旨在用于复杂的随机稀疏计数物种采样模型,该模型允许跨组内和内部共享信息。此分析涵盖了可能有限数量的物种和未知参数,在贝叶斯机器学习环境中,我们能够随着更多信息的采样而学习。为了实现我们的结合结果,我们采用了一系列从贝叶斯潜在特征模型,随机占用模型和偏移理论中汲取的方法。尽管有这种复杂性,但我们的目标是使从业人员(包括那些可能不熟悉这些领域的人)可以访问我们的发现。为了促进理解,我们采用了一种伪式风格,强调清晰度和实用性。我们的目标是用一种与微生物组和生态学专家产生共鸣的语言来表达自己的发现,以解决建模能力的差距,同时承认我们不是这些领域中的专家。这种方法鼓励将我们的模型用作域专家采用的更复杂框架的基本组成部分,从而体现了Dirichlet过程中开创性工作的精神。最终,我们对后验分析不仅会产生可进行的计算程序,而且还可以实现实际的统计实施,并在微生物组分析中为相关数量提供了明确的映射。
多晶硅拉伸试样在北卡罗来纳州微电子中心 (MCNC) 制造,并在约翰霍普金斯大学应用物理实验室进行测试准备。MCNC 的 DARPA 支持的多用户 MEMS 工艺 (MUMP) 是制造表面微机械设备常用的典型工艺。两层多晶硅用于形成 MEMS 设备的结构元件。多晶硅层由磷硅酸盐玻璃 (PSG) 牺牲层隔开,并通过一层氮化硅与支撑硅基板隔离。最后的金属层定义了设备的电触点。当设备制造完成后,PSG 层会溶解在蚀刻溶液中以释放机械结构。
有效的计算或Levenshtein distance是一种用于评估序列相似性的普遍指标,随着DNA存储和其他生物学应用的出现,引起了显着的关注。序列嵌入将Levenshtein的距离映射到嵌入向量之间的调用距离,已成为一种有前途的解决方案。在本文中,提出了一种基于泊松再生的新型基于神经网络的序列嵌入技术。我们首先提供了对嵌入维度对模型性能的影响的理论分析,并提出了选择适当的嵌入性识别的标准。在此嵌入维度下,通过假设托管式分离后的固定长度序列之间的levenshtein距离来引入泊松式,这自然与左环特链距离的定义相一致。此外,从嵌入距离的分布的角度来看,泊松回归大约是卡方分布的负面对数可能性,并在消除偏度方面提供了进步。通过对实际DNA存储数据的全面实验,我们证明了与最新方法相比,采用方法的出色性能。
[1] Arute, F.、Arya, K.、Babbush, R. 等人。使用可编程超导处理器实现量子霸权。《自然》574,505–510(2019 年)。https://doi.org/10.1038/s41586-019-1666-5A。[2] Harrow, A. Hassidim 和 S. Lloyd,“线性方程组的量子算法”,《物理评论快报》103,150502(2009 年)。[3] Yudong Cao 等人,“用于求解线性方程组的量子电路设计”,《分子物理学》110.15-16(2012 年),第 1675–1680 页。arXiv:arXiv:1110.2232v2。[4] Solenov, Dmitry 等人。 “量子计算和机器学习在推进临床研究和改变医学实践方面的潜力。”密苏里医学第 115,5 卷 (2018):463-467。[5] C. Outeiral、M. Strahm、J. Shi、GM Morris、SC Benjamin 和 CM Deane,“量子计算在计算分子生物学中的前景,”WIREs Comput. Mol. Sci.,2020 年 5 月。[6] 王胜斌、王志敏、李文东、范立新、魏志强和顾永健,“量子快速泊松求解器:算法和完整模块化电路设计,”量子信息处理第 19 卷,文章编号:170 (2020)。 [7] H. Abraham 等人,“Qiskit:量子计算的开源框架”,2019 年。 [8] https://quantum-computing.ibm.com/ [9] Sentaurus TM 设备用户指南,Synopsys Inc.,美国加利福尼亚州山景城,2020 年。 [10] https://qiskit.org/textbook/ch-applications/hhl_tutorial.html [11] https://qiskit.org/documentation/stubs/qiskit.quantum_info.state_fidelity
摘要。在本文中,我们通过在一组局部相似性措施上最小化促进平滑度的函数,以比较给定图像的平均值以及在大量子框上比较一些候选图像,从而确定了给定的嘈杂图像。相关的凸优化问题具有大量的约束,这些约束是由kullback-leibler差异引起的扩展实现功能引起的。另外,这些非线性约束可以被重新重新构成AFFINE,这使该模型看起来更加易于处理。用于对模型的两种公式的数值处理(即原始限制和具有限制的原始公式),我们提出了一种相当普遍的增强拉格朗日方法,能够处理大量约束。提供了一种独立的,无衍生的全球融合理论,可以扩展到其他问题类别。对于在我们建议的图像denoising模型的设置中解决所得子问题的解决方案,我们使用合适的随机梯度方法。为了比较配方和相关的增强拉格朗日方法,提出了几个数值实验的结果。
利用拉伸桥中的横向起皱现象来表征超薄膜 (<100 nm) 的泊松比和残余应变。该测试方法利用残余应力驱动结构和易于复制的洁净室制造和计量技术,可无缝整合到薄膜生产装配线上。独立式矩形超薄膜桥采用可产生可重复横向起皱图案的尺寸制造。基于非线性 Koiter 板壳能量公式进行数值建模,将泊松比和残余应变与测得的起皱变形关联起来。泊松比会影响峰值幅度,而不会显著改变皱纹的波长。相比之下,应变会同时影响波长和幅度。使用 65 nm 厚的铜膜演示了概念验证。测量结果显示泊松比为 0.34 ± 0.05,拉伸残余应变为 (6.8 ± 0.8)x 10 − 3。测量的残余应变与使用相同薄膜的交替残余应力驱动测试结构测得的残余应变 (7.1 ± 0.2)x 10 − 3 高度一致。
众所周知,折纸超材料会根据其折叠状态显示出高度可调的泊松比值。关于可部署折纸镶嵌中的泊松效应的大部分研究都局限于理论和模拟。要通过实验实现折纸超材料中所需的泊松效应,需要特别注意边界条件,以实现可部署的非线性变形,从而实现可调性。在这项工作中,我们提出了一种新颖的实验装置,适用于研究在施加方向和横向同时发生变形的 2D 折纸镶嵌中的泊松效应。该装置包括一个夹持机构(我们称之为圣维南夹具),以消除单轴测试实验中的圣维南端部效应。使用此装置,我们对 Morph 折纸图案进行泊松比测量,该图案的配置空间结合了 Miura-ori 和 Eggbox 母图案的特点。我们通过实验观察到了 Morph 图案的泊松比符号切换能力,以及它通过拓扑变换显示泊松比的完全正值或完全负值的能力。为了证明新装置的多功能性,我们还对标准 Miura-ori 和标准 Eggbox 图案进行了实验。我们的结果表明,在折纸超材料中泊松比测量及其可调性方面,理论、模拟和实验是一致的。所提出的实验技术可用于研究折纸超材料在静态和动态状态下的其他可调特性,例如有限应变泊松比、弹性热膨胀和波传播控制。
Krishan Bishnoi Farzad Rostam-Abadi 美国陆军 TARDEC 沃伦,密歇根州 摘要 一种功能分级 NPR(负泊松比)材料概念已被开发用于陆军的一项关键应用——防爆。目标是开发一种综合计算设计方法和创新的结构材料概念,用于防爆导流板,该导流板可以将材料集中到最需要的区域,并利用爆炸能量调整其形状,以提高爆炸缓解和乘员保护。计算设计方法包括最佳导流板形状设计和最佳 NPR 材料分布,以进一步提高防护效果,同时最大限度地降低车辆的 CG 高度和导流板的重量。使用这种新概念制造的结构会对爆炸做出反应,并在爆炸力下重新配置,以提供最大的防爆保护。所介绍的研究工作包括两种基本的导流板设计方法:最佳导流板形状设计和创新导流板中的最佳 NPR 材料配置和分布。引言负泊松比 (NPR) 材料也称为膨胀材料 [1-2],由于其独特的行为而备受关注。与传统材料不同,NPR 材料沿垂直方向压缩时可能会收缩,这导致材料在压缩载荷下可以自身集中以更好地抵抗载荷的独特特性。当载荷幅度增加时,它也会变得更硬、更坚固。研究发现,NPR 可以改善材料/结构性能,包括增强的耐热/抗冲击性、断裂韧性、抗压痕性和剪切模量等 [1-3]。人们研究了一系列人造 NPR 材料/结构,例如键合砖结构、典型的多孔材料(蜂窝和泡沫)、微孔聚合物和分子 NPR 材料,其中一些已经成功制造 [4-7]。作者开发了一种三维版本的 NPR 材料 [8],具有多种应用潜力,包括图 1 所示的防爆结构。