过去几年中,量子信息论的最新发展强烈推动了复杂量子现象的表征。在这样的框架中,一个关键概念就是纠缠。纠缠除了被认为是量子计算和通信任务的基本资源 [1] 之外,还被用来更好地表征不同多体量子系统在相关哈密顿量的某些特征参数发生变化时的临界行为;后一种现象被称为量子相变 (QPT) [2]。事实上,人们还没有完全深入理解 QPT 的普遍性质。在这种情况下使用纠缠的特殊之处在于,作为量子关联的单一直接测度,它应该允许对 QPT 进行统一处理;至少,每当发生的 QPT 归因于系统的量子性质时,这总是在 T 0 时,因为不存在热涨落。 [3] 中首次描述了自旋 1=2 链中单自旋或双自旋纠缠与 QPT 之间的关系,其中注意到并发度的导数在 QPT 的对应性上表现出发散,并具有适当的标度指数。随后在 [4] 中研究了 L 自旋块的纠缠及其在表现出临界行为的自旋模型中的标度行为。最近在 [5] 中解决了通过纠缠来表征费米子系统基态相图的问题,其中展示了如何通过研究单点纠缠来重现已知(数值)相图的相关特征。虽然这是一个有希望的起点,但仍需澄清哪些量子关联导致了 QPT 的发生:是两点还是共享点(多部分),是短程还是长程。事实上,要回答上述问题,需要对任何两个子系统之间的纠缠进行详尽的研究。如果子系统只有 2 个自由度,则共生性可以正确量化量子关联 [6]。一个概括
极性相互作用:围绕分子移动的价电子可能不会对称分布。最接近周期桌右上角的非金属元件 - 氮,氧,氟和氯 - 倾向于将共享电子从碳和氢中转移。当有一个具有其中一个元素的官能团时,它具有轻微的负电荷,其余的分子(碳和氢)略有阳性。分子是极化的。其正切片被邻近聚合物的负截面所吸引。主链中的碳原子始终遵循具有四个共价键的八位字规则,因此无法沿链条传递额外的电子。如果将聚合物纤维一起摩擦,则可以建立静电电荷。
无线和移动通信技术的进步促进了移动医疗 (m-health) 系统的发展,以寻找获取、处理、传输和保护医疗数据的新方法。移动医疗系统提供了应对日益增多的需要持续监测的老年人和慢性病患者所需的可扩展性。然而,设计和运行带有体域传感器网络 (BASN) 的此类系统面临双重挑战。首先,传感器节点的能量、计算和存储资源有限。其次,需要保证应用级服务质量 (QoS)。在本文中,我们整合了无线网络组件和应用层特性,为移动医疗系统提供可持续、节能和高质量的服务。特别是,我们提出了一种能量成本扭曲 (ECD) 解决方案,它利用网络内处理和医疗数据自适应的优势来优化传输能耗和使用网络服务的成本。此外,我们提出了一种分布式跨层解决方案,适用于网络规模可变的异构无线移动医疗系统。我们的方案利用拉格朗日对偶理论,在能源消耗、网络成本和生命体征失真之间找到有效的平衡,以实现对延迟敏感的医疗数据传输。仿真结果表明,与基于均等带宽分配的解决方案相比,所提出的方案实现了能源效率和 QoS 要求之间的最佳平衡,同时在目标函数(即 ECD 效用函数)中节省了 15%。
如今,可再生能源 (RES) 在生产大量电力和减少二氧化碳及其他温室气体排放方面发挥着重要作用。最重要的 RES 之一是光伏 (PV) 技术:事实上,它需要的安装和维护成本较低,并且由于结构的模块化和有限的安装空间,最适合城市一体化 [1]。在此背景下,近零能耗建筑 (nZEB) 的概念得到了充分构建。欧盟委员会通过 2010/31/EU 指令 [2] 引入了这一术语,并在国家层面定义了增加 nZEB 数量的适当措施。特别是,在 nZEB 中,能源消耗必须主要由位于现场或附近的 RES 覆盖。此外,欧盟成员国确保到 2020 年 12 月 31 日,所有新建建筑都将成为 nZEB。首先,大学应该积极参与 nZEB 框架,因为它们具有相关的社会经济影响 [3-4]。事实上,一些大学已经朝着这个方向发展,重点研究可能的改造以降低现有学术建筑的能耗 [5-7]。莱里达大学(西班牙)、欧柏林学院(美国俄亥俄州)和澳大利亚联邦科学与工业研究组织能源中心(纽卡斯尔,澳大利亚)都已实现现有建筑的样本。[8] 中报告了其他 nZEB 学校和用于学术目的的可持续建筑的例子。[9] 分析了瑞典住宅建筑的自给自足率,重点关注用于此目的的最佳电池技术。相反,[10] 讨论了配备电池储能系统的德国商业建筑的自消耗和自给自足。[11] 和 [12] 几项基于国内 nZEB 的研究,重点研究了取决于电池大小的自给自足率。
摘要:货运业预计将保持甚至增强其在主要现代经济体中的基础性作用,因此,采取行动限制日益增长的环境压力迫在眉睫。使用电力是实现运输脱碳的主要选择;在重型车辆领域,它可以以不同的方式实现:除了全电池动力系统外,电力还可用于供电给接触网道路,或可以化学方式储存在液体或气体燃料(电子燃料)中。虽然目前的欧盟立法采用了从油箱到车轮的尾气排放方法,可实现所有直接使用电力的零排放,但从油井到车轮 (WTW) 方法可以考虑使用可持续燃料(如电子燃料)的潜在好处。在本文中,我们对使用电力为重型车辆供电的选项进行了基于 WTW 的比较和建模:电子燃料、电子液化天然气、电子柴油和液态氢。结果表明,直接使用电力可以节省大量温室气体 (GHG),而使用低碳强度电力生产电子燃料也可以节省大量温室气体。虽然大多数研究只关注绝对的温室气体减排潜力,但考虑新基础设施的必要性以及某些方案的技术成熟度对于比较不同的技术至关重要。本文对此类技术和非技术障碍进行了评估,以比较重型行业的替代途径。在可用的选项中,使用直接使用、能量密集型液体燃料的灵活性代表了脱碳的明显且巨大的直接优势。此外,本文采用的新方法使我们能够量化使用电子燃料作为化学储存的潜在好处,这种化学储存能够从可变可再生能源的生产峰值中积累电能,否则这些电能会因电网限制而被浪费。
● 与其他相关利益攸关方共同制定明确的管理条例和以医疗人工智能为中心的战略,指导其融入医学研究实践,并明确人工智能引发医疗失误的责任分配; ● 分配资金并投资于探索人工智能机遇、社会影响和道德挑战的举措。 ● 促进各部委、政府机构、医疗服务提供者和机构、研究组织、科技公司和其他相关利益攸关方在人工智能实施方面的合作,同时评估人工智能在发展医疗和医学研究创新方面面临的障碍。 ● 提高公众对人工智能在医学实践和研究中的好处的认识,以确保公众知情和患者接受 ● 制定和实施社会责任举措和社区驱动的项目,教育患者和公众了解医疗人工智能的用途。 医疗人工智能 (HCAI) 开发人员、研究人员和公司:
内容和结构概念和国际政治经济学的理论主题1:什么是国际政治经济学?Locating the field Topic 2: The Mercantilist - Nationalist Perspective Topic 3: The Liberal Perspective Topic 4: Critical Perspectives of International Political Economy REGIONALISM AND IPE Topic 5: Regionalism: European Union Topic 6: Regionalism: North America Topic 7: Regionalism: Latin America Topic 8: Regionalism: Middle East Topic 9: Regionalism: East and South-East Asia POLICY TOPICS IN IPE Topic 10: The ideal of Poverty Reduction and the End饥饿主题11:气候变化的经济影响主题12:全球化和文化身份主题13:全球化与劳动劳动主题的未来14:人类发展指数索引主题15:全球供应链中的道德链条主题16:全球移民趋势
章节编号I.简介05 II。策略目标09 III。七个焦点支柱11 1。促进创业14 2。启用基础架构16 3。过渡到Hi-Tech 20 4。技能发展22 5。支持业务环境24 6。增强“喀拉拉邦”品牌权益28 7。基于优先行业的工业化30 iv。优先部门31 1.航空航天和防御31 2。人工智能,机器人技术和其他突破性技术32 3。阿育吠陀34 4。生物技术与生命科学35 5。设计36 6。电动汽车38 7。电子系统设计与制造39 8。工程研究与发展40 9.食物技术41 10。石墨烯42 11。高增值橡胶产品43 12.高科技耕作和增值种植园产量45 13。物流和包装46 14。海事部门48 15。医疗设备49 16。纳米技术50 17。Pharmaceuticals 51 18。回收与废物管理52 19.可再生能源53 20。零售业55 21。旅游与酒店56 22。3D打印57 V.激励措施59 VI。政策任期63
蒙特卡洛 (MC) 方法已用于计算半导体中的半经典电荷传输超过 25 年,是微电子器件模拟最强大的数值工具 [1]。然而,当今的技术将器件尺寸推向了极限,传统的半经典传输理论已不再适用,需要更严格的量子传输理论 [2]。为此,人们提出了各种基于格林函数 [3] 或维格纳函数 [4] 方法的电荷传输量子动力学公式。虽然这种量子力学形式允许严格处理相位相干性,但它们通常通过纯现象学模型描述能量弛豫和失相过程。人们还提出了一种用于分析载流子-声子相互作用下的瞬态传输现象的完整量子力学模拟方案 [5]。然而,由于需要大量计算,其适用性仍然仅限于短时间尺度和极其简单的情况。因此,尽管人们付出了很多努力,尽管在研究这些量子动力学公式方面取得了无可置疑的智力进步,但它们在强散射动力学存在下的实际设备中的应用仍然是一个悬而未决的问题。Datta、Lake 和同事的最新成果似乎很有希望 [6]。然而,他们的稳态格林函数公式不能应用于时间相关的非平衡现象的分析,而这种现象在现代光电器件中起着至关重要的作用。在本文中,我们提出了一种广义 MC 方法来分析量子器件中的热载流子传输和弛豫现象。该方法基于控制单粒子密度矩阵时间演化的动力学方程组的 MC 解;它可以被视为对开放系统的扩展
