抽象的咖啡因一种具有药用特性的刺激性,轻度添加剂药物是某些茶和咖啡中存在的生物活性成分。它自然发生在茶,咖啡因,可可等的叶子,种子或水果中。中度时,它可以增强能量或高度警觉性的感觉,但在高处确实可以带来焦虑和抑郁神经症的条件。在这项研究中,通过UV/VIS分光光度计学方法确定了在Auchi Town中通常出售的7茶和咖啡品牌的咖啡因水平的定量。氯仿用作在274 nm波长下测得的咖啡因的溶剂和浓度。为选定的茶和咖啡样品获得的结果是; 11.56 ppm,30.22 ppm,78.22 ppm的顶级茶,里士满茶和立顿茶。咖啡的效果为138.34 ppm,324.33 ppm,348.22 ppm和388.12 ppm,用于Nescafe Classic,Nescafe Malty,Nescafe,Nescafe Original和Cowbell Coffee。在分析的茶样品中,在牛铃咖啡(388.22 ppm)中发现了最高的咖啡因浓度,而最低的咖啡因浓度(11.56 ppm)。这项研究的结果给出了tenconsumedTeastrinksinnigeria的初步信息。食品和药物管理局和控制建议不超过五杯含咖啡因的茶或咖啡(200 mg)每天关键词:咖啡因,咖啡,茶,uv-vis分光光度计
Water Tests (ppm NOT lbs) Average of water samples (If more than 1 taken): _____________ ppm Soil Tests (ppm NOT lbs) Composite sample 0” – 36” required for EVERY 80 acres or one per field.请输入所有所采集的所有深处样品的平均残留氮。土壤样品的平均值(如果超过1次):_______________ ppm有机物(仅在采集浅样品时):_______________ ppm评论:填写形式:_______________________________________________________________________________________________________________________________________________________________
物理特性 颜色 目测 象牙色 密度 g/cm3 ASTM C373-88, ASTM C20 3.91 晶粒尺寸 微米 ASTM E112-10 25 结晶相 % Alpha XRD 100 吸水率 % ASTM C373-88 0% 抗弯强度 PSI 3 点 PSI ASTM C1161, F417 39,870 弹性模量 GPA per ASTM C1198 ASTM C1198 347 泊松比 ASTM C848 0.22 抗压强度 (PSI) ASTM C773 323,000 硬度 (GPA) ASTM C1327 维氏 1342 断裂韧性 MPa√m 单边缺口 4.19 添加剂 (YtO3) Wt% ICPMS N/A 杂质 (SiO2 ) PPM GDMS <500 杂质 (Na2O) PPM GDMS <400 杂质 (CaO) PPM GDMS <400 杂质 (K2O) PPM GDMS <100 杂质 (Fe2O3) PPM GDMS <400 杂质 (TiO2) PPM GDMS <100 杂质 (C) PPM GDMS <50 杂质 (S) PPM GDMS <50
摘要。一般来说,煤矿开采都是公开进行的,使用重型设备在表土区取土和搬运土壤,直到可以进行煤矿开采。因此,由于存在物理、化学和生物土壤损害,营养水平较低。生物修复是利用土壤微生物改善前煤矿土地的替代方法之一,这些微生物对土壤植物激素水平有影响,例如产生生长素的根际细菌。本研究旨在分离和表征前煤矿土壤上生长的豆科植物根系的根际细菌,并定性和定量确定其产生 IAA 激素的能力。表征包括革兰氏染色特性、菌落形态、分离物排列和细胞形状。然后,分别使用 Salkowski 方法和分光光度法测试细菌定性和定量产生 IAA 的能力。结果表明,在原煤矿区土壤上生长的豆科植物根际细菌分离株中有 11 种能够产生 IAA 激素,平均浓度为 15.949 ppm(2IA4);10.762 ppm(4IIE3);9.700 ppm(ID3);9.422 ppm(3IB4);7.970 ppm(2IA3);7.847 ppm(6IIB3);7.268 ppm(8IIIB4);6.804 ppm(IIID5);6.459 ppm(IE5);5.379 ppm(7IIIB3);和 5.086 ppm(5IB3)。浓度最高的根际细菌分离株有可能被选为原煤矿区土壤上豆科植物的生长促进剂,以提高豆科作物的生产力。
椰子和棕榈树液中含有抗氧化剂成分,蛋白质和各种糖的成分会经过高热处理,以产生硬糖和棕色的糖。尽管进行了这种处理,但椰子和棕榈糖仍然通过形成黑色素素具有抗氧化活性。然而,该处理导致形成诱变化合物,例如5-羟基乙基曲面(HMF)和Furfuryl酒精(FA)。使用[2,2'-氮杂性 - (3-乙基苯甲酰唑啉-6-磺酸)](ABTS)测定法测定抗氧化活性,并使用带有UV探测器的梯度HPLC方法测量诱变化合物。椰子和棕榈糖与总HMF相比具有更高的抗氧化活性。在糖和椰子中发现的诱变化合物是HMF和Furfural,但糖中不存在富富烯醇。椰子和棕榈糖的Trolox等效抗氧化能力(TEAC)分别为55.37 ppm和110.74 ppm。椰子和棕榈糖中的总HMF含量分别为3.25 ppm和2.97 ppm。椰子和棕榈糖中的总呋喃含量分别为462.03 ppm和371.87 ppm。
研究人员反复强调了我们如何迫切地减少大量氮肥的消耗,以支持农业生产力并保持可持续的生态系统。使用壳聚糖(CS)作为缓慢释放的载体被认为是降低合成肥料和提高作物生产率的潜在工具。因此,在随机完整的块设计中布置了两个现场实验,以研究七种治疗方法的影响,包括合成肥料和基于壳聚糖的NPK纳米结构(CH/NPS-NPK)的外源应用对生产率,生产力和营养特征的增长,生产率和营养特征的全球策略作物的2022222222年季节和2023年的2023年季节的营养特征。实验处理为:T1 =全建议合成NPK(推荐尿素,超磷酸,硫酸钾;对照治疗),T2 = 70%T1+ CH/ NPS-NPK 100 ppm,T3 = 70%,T1+ CH/ NPK 200 ppm的T1+ CH/ NPK 200 ppm,T5 = 70%PPM = 70%= 70%ppm,TPM的TPM, T1+ CH/NPS-NPK 100 ppm,T6 = T1+ CH/NPS-NPK 200 ppm的30%,T7 = T1+ CH/NPS-NPK的30%300 ppm。结果表明,T4(即推荐的NPK+ CH/NPS-NPK 300 ppm的70%)和T1(完全推荐的合成NPK)导致了与其他处理相比,水稻的最高和最显着的生长和最重要的大米特征以及营养谷物含量。因此,将70%的推荐NPK与CH/NPS-NPK 300 ppm结合在一起,作为一种外源应用,可以是将合成NPK肥料降低30%的明智选择,而在帕迪领域中,在应用完整推荐的NPK时,在不产生生长,产量特征或营养谷物方面会大幅下降,而不会产生大幅下降。
本文档中提供的第三方平台支持信息不会取代第三方供应商提供的任何信息。请确保与 PPM Center 结合使用的所有第三方软件和平台组合均受相应供应商支持,并且 PPM 支持这些组合。PPM 对涉及第三方产品支持平台的任何差异概不负责。
本研究旨在通过失重法使用麒麟叶提取物 (Chromolaena odorata) 测定 ASTM A36 钢在海水介质中的抑制效率和腐蚀速率。添加的抑制剂为麒麟叶提取物,浓度变化为100 ppm、200 ppm、300 ppm、400 ppm 和 500 ppm,喷洒在样品表面,然后浸泡7天。采用重量损失法计算腐蚀速率。研究结果表明,麒麟叶提取物能有效抑制腐蚀速度。当抑制剂添加浓度为400 ppm时,样品的腐蚀速率值最小,为2.053 ppm。同时,在相同缓蚀剂浓度下也获得了最高的缓蚀剂效率,为87%。抑制剂的添加也被证明会影响样品表面的微观结构,因为抑制剂经过吸附并在样品表面形成一层薄层,使薄层成为一道屏障,防止腐蚀环境与样品直接接触,从而抑制腐蚀的速度。关键词:腐蚀率、麒麟叶提取物、天然抑制剂、减肥方法。
粗蛋白(最小)12.00%赖氨酸(最小)0.85%甲氨酸(最小)0.33%苏氨酸(最小)0.58%色氨酸(最小)0.23%的粗脂脂肪(最小)12.00%omega-3脂肪酸(最小)0.90%omega-6脂肪酸(最小)4.80%粗纤(最大)18.00%酸洗涤剂纤维(最大)25.00%中性洗涤剂纤维(最大)42.00%饮食淀粉(最大)10.00%糖(最大)8.30%钙(最小)0.75%钙(最大)1.25%磷(最小)0.45%钠(最小)0.20%钠(最大)0.70%灰分(最大)10.00%镁(最小)0.40%钾(最小)1.00%硫(最小)0.20%铜(最小)55 ppm硒(最小)0.50 ppm硒(最大)0.60 ppm锌(最小)165 ppm铁(最小)175 ppm锰(最小)110 ppm碘(最小)2 ppm钴(最小)1 ppm维生素A(最小)6,000 IU/LB维生素D(最小)1,000 IU/LB维生素E(最小)200 IU/LB Riboflavin(Min。)2.20 mg/lb硫胺素(最小)6.50 mg/lb生物素(最小)1.60 mg/lb抗坏血酸(最小)110 mg/lb糖酵母(最小)28亿cfu/lb总微生物计数*(最小)30亿CFU/LB蛋白酶(枯草芽孢杆菌)**(最小)5,400 U/LBα-淀粉酶(叶肉芽芽孢杆菌)***(最小) 250 U/LB5,400 U/LBα-淀粉酶(叶肉芽芽孢杆菌)***(最小)250 U/LB
在禽舍中,动物新陈代谢和动物粪便分解会产生氨 (NH 3 ) 等有害气体。氨的产生是由于微生物分解或还原含氮物质,特别是垫料中所含尿酸的分解。NH 3 的产生和浓度水平取决于多种因素,例如垫料类型和管理、湿度、pH 值和温度。温度和湿度必须分别保持在 13 至 27°C 和 50 至 70% 的范围内。高温和高湿的结合促进了细菌的生长,从而通过有机物的分解产生氨 [30]。在家禽中,氨的浓度必须保持在 10 到 25 ppm 之间,并且不超过 35 ppm,暴露类型最长为五十分钟,通常采用的限制是 15 ppm。平均硫化氢在最长五十分钟内不能超过 10 ppm,并且不能超过 15 ppm。二氧化碳浓度 (CO 2 ) 的阈值限制值为 5,000 ppm,通常必须保持在 2500 ppm 以下。还会产生其他气体,例如甲烷 (CH 4 )、硫化氢 (H 2 S)、一氧化碳 (CO)。在本文中,我们的贡献是通过人工智能算法监测和预测家禽的空气质量。