对于基于哈希的签名,人们认为系统的安全性基于对称哈希函数的可计算性这一经过充分研究的难度。这些方法通常使用哈希树,这是一种特殊的过程,可以为多个一次性签名分配一个公共验证密钥。因此,这样的系统是有状态的,即签名的创建者必须在每次操作后更新其签名密钥,并且在创建密钥时已经确定了最大签名数量。这些程序包括已经标准化的扩展 Merkle 签名方案 (XMSS) 和 Leighton Micali 系统 (LMS)。基于哈希函数的无状态签名系统也是可行的,但创建签名需要更多的计算时间,并且必须使用更长的签名。无状态签名系统的一个例子是 SPHINCS [7]。
《国家网络安全战略》包括一项为后量子时代做好准备的战略目标,敦促私营部门效仿美国政府 (USG) 的模式,优先将易受攻击的公共网络和系统过渡到基于抗量子密码的环境,并制定互补的缓解策略,以在已知和未知的未来风险和威胁面前提供加密灵活性。正如《国家安全备忘录 10 (NSM-10)》中所述,“提升美国在量子计算领域的领导地位,同时降低易受攻击的密码系统的风险”,当密码分析相关的量子计算机可用时,它们可能会危及民用和军用通信,破坏关键基础设施的监督和控制系统,并破坏大多数基于互联网的金融交易的安全协议。正如 NSM-10 所指出的,美国必须优先考虑及时、公平地将加密系统过渡到抗量子加密技术,目标是到 2035 年尽可能地降低量子风险。去年,美国国家标准与技术研究所 (NIST) 选择了四种旨在抵御量子计算机攻击的算法。NIST 计划在 2024 年底前完成使用这些算法的标准。推动整个生态系统采用新兴的 PQC 标准,甚至推动支持关键基础设施和保护美国敏感数据(包括存储数据)的大量公共和私营部门组织采用这些标准,将是一项复杂的工作。这将需要服务提供商和硅片解决方案公司之间的协调,原始设备制造商将需要集成这些解决方案。此外,它还需要标准和开源社区做出更广泛的努力,以支持集成到关键协议中以及创建生产级开源代码、库和副驾驶员。采用这些技术可能需要对硬件和软件加密技术进行昂贵的更新。此外,相关利益相关者必须意识到这些标准以及采用这些标准的必要性。为了支持国家为后量子时代做好准备,NSTAC 将确定关键基础设施提供商采用 PQC 标准的障碍,并就如何在未来十年内减少这些障碍以迎接量子计算的到来提供建议。为了提供这些建议,该研究将考虑过去技术转型中的经验教训,并包括与关键基础设施提供商、USG 机构和非联邦公共部门的对话
背景和目的 提高公平性、减少差异性结果和确保密歇根州家庭的健康分娩是密歇根州围产期质量协作组织和第 7 区围产期质量协作组织支持的所有努力的核心。如果没有家庭的意见和反馈,如果没有社区组织和项目的努力,这些组织和项目满足当地需求并为我们各自地区的家庭提供护理和支持,就不可能实现这些目标。 2023 年 10 月,密歇根州卫生和公共服务部发布了其改善分娩结果战略计划的最新版本。这项名为《促进健康分娩:密歇根州家庭和社区公平计划 1》的计划旨在付诸行动,供社区合作伙伴、当地利益相关者和所有致力于改善密歇根州家庭分娩结果的个人使用。
摘要 - 采用抗量子的加密网络协议或量词后加密术(PQC)的问题对于使量子计算民主化至关重要。问题是紧迫的,因为实用的量子计算机将在未来几十年中打破经典的加密。过去的加密数据已经收集,可以在不久的将来被删除。采用后量子加密的主要挑战在于算法复杂性和硬件/软件/网络实现。现有网络基础设施将如何支持量子后加密术的宏伟问题仍未得到解答。本文描述了:i)在伊利诺伊大学Urbana-Champaign的NA型超级计算应用中心(NCSA)放置的新型量词后加密(PQC)网络仪器的设计; ii)关于PQC采用率的最新结果(安全壳 - SSH - SSH,运输层安全 - TLS等)。); iii)在关键科学应用中实施PQC的现状(例如Openssh或Scitokens); iv)抗量子的挑战; v)讨论潜在的新攻击。这是在国家规模的超级计算中心和织物测试台上对PQC采用的第一个大规模测量。我们的分析确定了迁移当前应用的途径,以备量子。我们的结果表明,只有Openssh和Google Chrome已成功实施了PQC,并获得了NCSA的OpenSSH连接的初始采用率为0.029%(20,556,816中的6,044个)来自主要的Internet Service Provers或诸如Oarnet,Google fiber liber wepp and,goog fiber webt(例如,Unigre Internet Service Service Provers)和U.Aarnet,Google fiber webs(U.S.) (瑞典),2023 - 2024年的总体采用率同比增长。
•IAD将在不太遥远的未来开始过渡到抗量子抗算法的过渡•[…]•对于尚未过渡到Suite B椭圆曲线算法的那些合作伙伴和供应商,我们建议不要为此做出重大的支出,而是为了为即将到来的量子抗性量
• 很多方案迅速受到攻击! • 许多类似方案(尤其是格子 KEM) • 第 1 届 NIST PQC 标准化研讨会 • pqc 论坛上有超过 300 条“官方评论”和 900 篇帖子 • 研究和性能数据
对于组织而言,更新加密机制是一个漫长的过程,需要在此过程中精心准备和验证。例如,可以参考弃用 DES、SHA-1 或 RSA 1024 位密钥的困难。组织需要确保每个关键基础设施组件都支持新的后量子机制。此外,组织规模越大,其基础设施通常就越复杂,数据驻留在不同位置或云和本地的混合环境中,这会使升级过程变得复杂。为了缓解这一挑战,必须尽快开始测试这些新机制的部署,以便在量子日之前做好准备。现在制定加密敏捷策略将使组织在需要时能够更快、更安全地进行转型。
PQC从业者已经开始致力于打击量子安全威胁。他们了解组织的风险水平,并且已经建立了保护加密的工具。他们将证书合并到单个管理平台上,以优化可见性并控制其所有组织的资产。此外,PQC从业人员已经采取了第一步,为制定全面的策略,不仅可以确保其网络免受当今的量子威胁,而且还可以抵御未来的量子威胁。在这种知识和准备水平上,我们看到组织测试了量子后加密证书的生存能力。
对网络(包括信息系统和数据,下同)实行等级保护和等级监管,对网络中使用的网络安全产品实行等级管理,对网络中发生的安全事件实行等级响应和处置
专家预测,在未来二十年左右的时间里,我们将拥有量子计算机,这将使我们所依赖的某些加密方式变得无效,并容易受到恶意实体的攻击。后量子计算 (PQC) 算法填补了传统加密算法无法填补的安全漏洞。PQC 算法的一个特殊类别是密钥交换机制 (KEM) 算法。这些算法的目标是安全地生成共享对称密钥,可用于加密主机之间未来的通信。这些算法的一个重要用例是保护传输层安全协议 (TLS) 免受量子对手的攻击。由于 TLS 的广泛使用,任何新标准都必须使用既高效又安全的 PQC 算法。为此,我们测试了 oqs-provider 库提供的每个 PQC KEM 算法,以比较它们对 TLS 握手的性能影响。
