通过使用AI分析语言数据,研究有关语言获取和学习外语的知识可以提供研究。Moritz Dittmeyer博士是哲学家和物理学家。他在歌德实验室语言中为歌德学院工作,并为学习语言开发AI应用程序。“我们去年开发了印加人。这是一位智能更正助手,他支持教师对生产写作任务的更正和评估。inka具有自己的集成语音模型。校正助手接受了各种机械和深度学习方法的培训。为此,我们使用了一百万个文本数据。收集到的培训评论和更正截然不同。您并不总是完全可用。通过新的培训数据,预测越来越好。 ”
描述/背景眼睛的结构在两个子标题下分类:(1)前部和(2)后段。前部段由眼睛的前部组成,包括瞳孔,角膜,虹膜,睫状体,幽默和镜头。后段由眼睛的背面组成,包括玻璃体幽默,视网膜,脉络膜,黄斑和视神经。后段眼疾病(例如,与年龄相关的黄斑变性,黄斑水肿,糖尿病神经病,葡萄膜炎,开眼性青光眼)是视觉障碍的最普遍的原因。眼药监督的最常见途径是玻璃体内注射。其他用于药物输送的途径包括局部,全身,离子遗迹,近去和其他注射路线。扩展释放玻璃体内植入物是相对较新的输送模式。局部应用仍然是由于易于管理而成为最优选的送货路线。局部应用可用于治疗影响眼前部分的疾病。尽管局部和系统性途径很方便,但缺乏生物利用度和无法将治疗水平提供给视网膜的药物水平,这促使视力科学家探索了替代性给药途径。上椎骨空间是巩膜和脉络膜之间的潜在空间,是一种将治疗剂传递到眼后的方法。潜在的注射螺旋体注射的潜在优势是能够最大程度地减少全身性不良反应,同时向局部组织提供较高的药物水平。该提出的福利假设高药物局部水平会导致预后改善。权衡与这种潜在的好处是局部组织损害微峰的风险。微通道系统将药物输送通道与用于套管尖端定位的光纤光源相结合。该技术正在研究用于治疗与视网膜疾病相关的螺想下新生血管化。
除了脉络膜上腔应用外,研究表明,该技术还有望将药物输送至睫状体上腔、8 视网膜下腔 9 和角膜。10 其中一个值得关注的领域是将原位形成的水凝胶输送到脉络膜上腔,这可能会降低青光眼患者的眼压。11 微针潜在应用的扩大意味着 Visionisti 平台的潜力也得到了扩大,可以使用标准的皮下注射针和实心针将注射疗法输送到这些部位。此外,与专用微针相比,Visionisti 平台的另一个好处是,可以使用相同的可调节适配器根据每个潜在输送目标调整暴露的针长度,而不需要专门针对每个目标使用不同的微针。Visionisti 平台的知识产权受到广泛保护;Visionisti 在欧洲、日本和美国拥有技术专利,在欧洲和美国拥有设计专利。