KULKE H 47.99 英镑 2016 印度历史 第 6 版 24 TOLLE,E 499.00 卢比 2016 新地球 25 TITCHMARSH 19.99 英镑 2012 对植物的热情 26 PRASAD R 225.00 卢比 0 水稻农学教科书 27 NANDI,S.K 575.00 卢比 2014 兽医外科和放射学教科书 28 RANGANATH,G.K 200.00 卢比 2013 教科书 B.S.C 第 3 学期数学 29 BROADWAY A.C. 395.00 卢比 2014农业商业管理 第 1 版 30 KAUSHISH S.K.450.00 卢比 2010 动物饲养教科书 第 1 版 31 VERMA D.N.425.00 卢比 2014 动物营养教科书 第 3 版 32 SRIVASTAVA,KP 495.00 卢比 2010 应用昆虫学教科书,第 I 卷 33 SHUKLA.R.M.1,995.00 卢比 2021 细胞生物学教科书 34 BHATTACHARYA.T 1,295.00 卢比 2016 经济地理教科书 35 GUPTA,I.C 390.00 卢比 2016 工程计量学教科书 36 RAJPUT,R.K 750.00 卢比 2019 流体力学教科书 37 DUBE,H.C 350.00 卢比 2020 真菌细菌和病毒教科书 38 KUMAR,H.D 140.00 卢比 2001 细胞学遗传学和进化教科书 39 VERMA D.N.550.00 卢比 2012 热带地区畜牧生产管理教科书 第一版 40
钦奈,2024 年 11 月 11 日:TVS Supply Chain Solutions Limited(NSE:TVSSCS,BOM:543965)是一家全球供应链解决方案提供商,也是印度最大、增长最快的综合供应链解决方案提供商之一,今天宣布了其 2025 财年第二季度和上半年的综合未经审计财务业绩。该公司报告称,截至 2024 年 9 月 30 日的季度,税后利润为 ₹ 10.6 千万,而 2024 财年第二季度同比亏损(₹ 21.9 千万),环比增长 42.5%。其 25 财年上半年的税后利润为 ₹3 1.6 千万。而 24 财年上半年的税前利润为 (₹41.6 千万卢比)。25 财年第 2 季度的综合收入增长 11% 至 ₹ 2,512.9 千万卢比,而 24 财年第 2 季度为 ₹ 2,262.9 千万卢比。
本演示文稿(“演示文稿”)由 TVS Supply Chain Solutions Limited(“公司”)编制,仅供参考,不考虑任何特定人士的具体目标、财务状况或需求,并非且其中任何内容均不得理解为关于购买或出售本公司或任何关联公司在任何司法管辖区的任何证券的邀请、要约、招揽、推荐或广告,或参与投资活动的诱因,并且其任何部分均不得构成任何合同、承诺或投资决策的基础或依据。本演示文稿不考虑也不提供关于任何人的具体投资目标或财务状况的任何税务、法律或投资建议或意见。在根据任何信息采取行动之前,您应该考虑信息与这些问题的适当性,特别是您应寻求独立的财务建议。本演示文稿及其内容为本公司和/或其附属公司的机密和专有财产,不得以任何方式将其任何部分或其主题直接或间接地使用、复制、复印、分发、共享、重新传输、总结或传播给任何其他人,或为任何目的全部或部分地出版。
摘要展开的蛋白质反应(UPR)是一种细胞自主压力反应,旨在恢复稳态,这是由于内质网(ER)中错误折叠蛋白的积累。病毒经常劫持宿主细胞机制,导致ER中错误折叠的蛋白质积累。细胞自主UPR是感染细胞对这种压力的直接反应,旨在通过停止蛋白质翻译,降解错误折叠的蛋白质以及激活增加分子伴侣产生的信号通路来恢复正常功能。细胞 - 非摩托菌MOUS UPR涉及UPR信号从最初压力的细胞传播到缺乏压力源的无重大细胞。尽管病毒是已知的细胞自主UPR调节剂,但最近的进步强调,单个自主UPR在阐明局部感染如何引起全身作用方面起着至关重要的作用,从而有助于疾病症状和进展。另外,通过利用细胞 - 非自治UPR,病毒制定了新的策略来建立促病毒状态,从而促进病毒扩散。本综述讨论了通过超越细胞自主到非自主过程的细胞自主过程和诱导者,播种者和UPR信号接收器的机械细节,从而扩大了对UPR在病毒感染和疾病进展中的作用的理解。
(SHRI JITIN PRASADA)(a)至 d):印度政府强调“全民人工智能”的概念,这与总理在全国范围内培育和推动尖端技术应用的愿景相一致。这一举措旨在确保人工智能惠及社会各界,推动创新和增长。政府致力于利用人工智能 (AI) 的力量,在医疗、农业、教育、政府治理、新闻部和其他领域造福人民。与此同时,政府也意识到人工智能带来的风险。幻觉、偏见、错误信息和深度伪造是人工智能带来的一些挑战。为了应对人工智能的挑战和风险,政府认识到需要建立护栏以确保人工智能的安全和可信。因此,中央政府在与相关利益相关方进行广泛的公众协商后,于 2021 年 2 月 25 日公布了《信息技术(中介机构指南和数字媒体道德规范)规则》2021 年(“2021 年 IT 规则”),该规则随后于 2022 年 10 月 28 日和 2023 年 4 月 6 日进行了修订。2021 年 IT 规则对中介机构(包括社交媒体中介机构和平台)规定了具体的法律义务,以确保他们对安全可信的互联网负责,包括迅速采取行动消除被禁止的虚假信息、明显虚假的信息和深度伪造。如果中介机构未能遵守 2021 年 IT 规则规定的法律义务,他们将失去《2000 年信息技术法》(“IT 法”)第 79 条规定的避风港保护,并应根据任何现行法律承担相应的诉讼或起诉。 《2023 年数字个人数据保护法》于 2023 年 8 月 11 日颁布,该法案规定数据受托人有义务保护数字个人数据,追究其责任,同时确保数据主体的权利和义务。政府已成立人工智能咨询小组,针对印度特定的监管人工智能框架,由印度总理首席科学顾问 (PSA) 担任主席,来自学术界、工业界和政府的不同利益相关者参与,目标是解决与制定负责任的人工智能框架有关的所有问题,以实现人工智能的安全和可信开发和部署。
Banaras印度教杰出世界,正在邀请Appli博士学位奖学金,该奖学金是Dep尖端研究设备细胞仪(FCM),凝胶DOC,EBSD)的各种实验室。在D质谱系统色谱下,高RESO超级分辨率显微镜成像平台和高RE
2. P. Jindal、Chaitanya、SSS Bharadwaja、S. Rattra、V. Gupta、P. Breedon、Y. Reinwald 和 M. Juneja。“在颅骨成形术中使用不同材料优化颅骨植入物和固定装置设计。”《机械工程师学会会刊》L 部分:材料设计与应用杂志,237 (1),107–121。https://doi.org/10.1177/14644207221104875,2023 年(影响因子 - 2.66)3. M. Juneja、SK Saini、R. Acharjee、S. Kaul、N. Thakur 和 P. Jindal。“PC-SNet 用于在多参数磁共振成像中自动检测前列腺癌。”国际成像系统和技术杂志,32 (6),1861–1879。https://doi.org/https://doi.org/10.1002/ima.22744,2022 年(影响因子-2.17) 4. P.Jindal、A. Bhattacharya、M. Singh、D. Pareek、J. Watson、R. O'connor、P. Breedon、Y. Reinwald 和 M. Juneja,“利用 3D 设计和制造进行单侧颅骨缺损骨重建,”增材制造与医学汇刊 AMMM,第 4 卷,第 1 期,第 655-655 页。2022 年 5. M. Juneja、JS Minhas、N. Singla、S. Thakur, N. Thakur 和 P. Jindal,“使用光学相干断层扫描 (OCT) 图像进行青光眼诊断的融合框架,”应用专家系统,第 201 卷,117202。2022 年(影响因子 - 8.66) 6. P. Jindal、P. Sharma、M. Kundu、S. Singh、DK Shukla、VJ Pawar、Y. Wei 和 P. Breedon,“用于多层锂离子电池组冷却的石墨烯纳米板的计算流体动力学 (CFD) 分析。”热科学与工程进展,第 201 卷,117202。 31. 2022 7. M. Juneja、J. Chawla、G. Dhingra、I. Bansal、S. Sharma、P. Goyal、G. Lehl、A. Gupta 和 P. Jindal,“用于颌面矫正手术的增材制造技术分析”。《机械工程师学会会刊》,C 部分:机械工程科学杂志,0 (0),09544062221081992,2022(影响因子-1.76) 8. M. Juneja、S. Thakur、A. Uniyal、A. Wani、N. Thakur 和 P. Jindal,“基于深度学习的视网膜图像青光眼分类网络。”计算机与电气工程,101,108009,2022(影响因子-3.81) 9. M. Juneja、JS Minhas、N. Singla、S. Thakur、N. Thakur 和 P. Jindal,“使用光学相干断层扫描 (OCT) 图像进行青光眼诊断的融合框架。”应用专家系统,201,117202,2022(影响因子-8.66) 10. A. Dhawan 和 P. Jindal,“羧酸官能化石墨烯增强聚氨酯纳米复合材料在静态和动态下的力学行为
供应商选择问题 (SSP) 是可再生供应链管理 (RSCM) 中的一个重要问题。选择战略性绿色供应商不仅可以发现供应链的可持续发展,还可以优化资源消耗率并减少负面环境影响,这与绿色发展背景相适应。作为多准则群决策 (MCGDM) 问题,选择战略性绿色供应商对可再生供应链至关重要。然而,如何为供应链选择战略性绿色供应商是一项艰巨的工作。因此,在这项研究中,评估一组战略供应商主要基于绿色能力,使用集成模糊最佳最差方法 (FBWM) 和其他两种技术,即 COPRAS(复杂比例替代方案评估)和 WASPAS(加权聚合和-产品评估)。首先,通过文献综述确定了九项战略供应商选择标准,并对伊朗可再生能源供应链的真实案例研究进行了讨论,以展示所提出框架的适用性。所应用的方法及其分析将为战略供应商选择的决策者提供见解。它可以帮助决策者和采购部门区分重要的战略绿色供应商选择标准,并评估本地和全球市场供应链中的战略绿色供应商。最后,通过与其他方法的比较分析讨论了该框架的优势和局限性。