引言系统性硬化症(SSC)的发病机理涉及皮肤和多个内部器官中的血管病,免疫失调和对组织纤维化(1、2)。tgf-β具有有效的促链活性,异常的TGF-β活性与SSC发病机理有关(3)。细胞外基质(ECM)组件的生产过多和组织积累是SSC(4)的标志。TGF-β-诱导的激酶1(TAK1),促丝分裂原激活蛋白激酶(MAP激酶激酶激酶[MAP3K])的成员,介导了非儿童TGF-β信号传导(5,6)。此外,通过NF-κB,TAK1也被视为TLR依赖性信号中的临界节点(7)。在这方面,已经表明TLR4/TAK1促进了炎症(8),而这种途径的抑制会阻止激动剂的激活并降低下游启动流量介体的表达(9-13)。我们先前证明了内源性TLR配体损伤相关的分子模式(湿),包括纤维蛋白 - 脱发域A(FN-EDA)和Tenascin-C,触发TLR4依赖性抗纤维性反应,与SSC有关(14,15)。鉴于TAK1参与多种类型的纤维化反应,毫不奇怪的是,在小鼠中,Tak1 In肾脏,肺和骨骼肌的靶向遗传消融与免受纤维化的保护和侵袭性有关(16-19)。 重要的是,TAK1的成年小鼠具有特异性缺失,表明皮肤伤口修复延迟(20)。 进一步,缺乏TAK1的胚胎小鼠纤维细胞显示出依赖性的tgf-β依赖性蛋白固定剂(21)。鉴于TAK1参与多种类型的纤维化反应,毫不奇怪的是,在小鼠中,Tak1 In肾脏,肺和骨骼肌的靶向遗传消融与免受纤维化的保护和侵袭性有关(16-19)。重要的是,TAK1的成年小鼠具有特异性缺失,表明皮肤伤口修复延迟(20)。进一步,缺乏TAK1的胚胎小鼠纤维细胞显示出依赖性的tgf-β依赖性蛋白固定剂(21)。在一起,这些观察结果表明,TAK1可能与SSC发病机理有关,而TAK1的药理学靶向可能代表了一种可行的治疗策略,可改善SSC以及其他形式的纤维化。TAK1的抑制剂已开发用于治疗各种疾病,但是由于次优的选择性和生物利用度,它们的临床应用开发已停滞不前(22,23)。最近,使用定向药物化学方法,我们开发了一种高度选择性和有效的TAK1抑制剂(13)。潜在的新型TAK1抑制剂(HS-276)是一个小分子,具有较低的nm afintion(IC 50 = 2.5 nm)
预印本(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。该版本的版权持有人于2025年1月19日发布。 https://doi.org/10.1101/2025.01.15.633177 doi:biorxiv preprint
3。Insir,Insir,Insrerm,加利福尼亚大学,4。研究所,瑞典141 86,瑞典。5。Rozoni 56,
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本发布于2025年1月24日。 https://doi.org/10.1101/2025.01.22.634362 doi:Biorxiv Preprint
在减数分裂期间,链交换蛋白RAD51和DMC1的核蛋白蛋白质对通过同源重组(HR)修复SPO11生成的DNA双链断裂(DSB)至关重要。正和负RAD51/DMC1调节剂的平衡活性可确保正确重组。类似烦躁的类似1(fignl1)先前显示出对人类细胞中RAD51的负调节。然而,fignl1在MAM-MALS中减数分裂重组中的作用仍然未知。在这里,我们使用男性种系条件敲除(CKO)小鼠模型解读了Fignl1和Fignl1相互作用调节剂(FIRRM)的减数分裂功能。在小鼠精子细胞中完成减数分裂预言所必需。尽管在减数分裂DSB热点对DMC1上有效募集,但晚期重组中间体的形成在FIRRM CKO和Fignl1 CKO精子细胞中仍然有缺陷。此外,Fignl1-FiRRM复合物将RAD51和DMC1的积累限制在完整的染色质上,这是由于SPO11催化的DSB的形成而独立于形成。纯化的人fignl1δn改变了rad51/dmc1核蛋白素的结构,并在体外inshi-bits链链入侵。因此,这种复合物可能在减数分裂DSB的位点调节RAD51和DMC1关联,以促进重组中间体的促进链和处理。
利用成簇的规律间隔短回文重复序列 (CRISPR)-CRISPR 相关核酸酶 (Cas) 介导的技术进行基因组编辑,彻底改变了基础植物科学和作物遗传改良 ( Chen et al., 2019 )。CRISPR-Cas 盒的稳定遗传转化是植物体内基因组编辑的主要方法。在许多有性生殖植物中,一个主要问题是转基因元件通过花粉传播 ( Devos et al., 2005 )。玉米 ( Zea mays L. ) 是一种典型的异交作物,每株植物可产生多达 200 万至 500 万个花粉粒 ( Goss, 1968 ),由于风传播,建议隔离距离为 200 米 ( Ma et al., 2004 ),甚至由于蜜蜂等昆虫的觅食,隔离距离可超过 3 公里 ( Danner et al., 2014 )。之前报道的使用自杀转基因的策略有效杀死了 T 0 植物产生的含有 Cas9 转基因的未成熟胚和花粉,并产生了无转基因的编辑 T 1 植物 ( He et al., 2018 )。特别是对于无性繁殖植物,该技术解决了去除转基因成分的难题,因为通过减数分裂重组和分离去除转基因成分是不可行的。然而,基因组编辑有许多有用的应用,这些应用需要将 Cas 转基因保留在植物中,包括 RNA 引导的 Cas9 作为体内靶标突变体( Li 等人, 2017 )和单倍体诱导偶联编辑( Kelliher 等人, 2019 ; Wang 等人, 2019 ),通过使用 cenh3- 无效突变体作为雌配子体( Ravi and Chan, 2010 )。在本文中,我们提出了 PSEC,它可以防止花粉转基因从含有花粉自杀盒的 T-DNA 的植物中扩散,该 T-DNA 位于特定的单向导 RNA 和 Cas 盒旁边。同时,PSEC 仍然可以通过雌配子遗传到下一代,并且还保留 CRISPR-Cas 基因编辑活性。通过有性杂交,它以反式方式在杂交亲本基因组中诱导有效的靶突变,以用于育种应用。
。CC-BY-NC-ND 4.0 国际许可证下提供的(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者,此版本于 2025 年 1 月 8 日发布。;https://doi.org/10.1101/2025.01.08.631959 doi:bioRxiv 预印本
1 型糖尿病是一种无法治愈的自身免疫性疾病,由于可重复性危机,有希望的治疗方法的临床转化受到阻碍。在这里,两个独立的研究中心通过短期施用晚期糖基化终产物受体 (sRAGE) 拮抗剂来预防小鼠糖尿病。用 sRAGE 治疗可增加胰岛、胰腺淋巴结和脾脏内的调节性 T 细胞 (T regs),从而提高胰岛胰岛素的表达和功能。T reg 耗竭可消除糖尿病保护作用,并显示依赖于使用基因敲除小鼠拮抗 RAGE。用 RAGE 配体治疗的人类 T regs 下调了抑制、迁移和 T reg 稳态的基因 (FOXP3、IL7R、TIGIT、JAK1、STAT3、STAT5b、CCR4)。 sRAGE 逆转了抑制功能的丧失,其中 T regs 增加了增殖并抑制了常规 T 细胞分裂,证实了 sRAGE 扩增了功能性人类 T regs。这些结果突出了 sRAGE 是一种预防糖尿病的有吸引力的治疗方法,在多个研究中心和人类 T 细胞中显示出有效性和可重复性。
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版本的版权持有人于2023年11月8日发布。 https://doi.org/10.1101/2023.11.06.565765 doi:Biorxiv Preprint
摘要:耐药性是实现常规和靶向抗癌药物治愈的主要障碍。获得性耐药性的出现最初是由非遗传转录变化介导的,这种变化发生的频率比突变高得多,可能涉及群体规模的转录组适应。CDK8/19 激酶通过与转录介导复合物结合,与不同的信号响应转录因子协同调节转录重编程。在这里,我们测试了 CDK8/19 抑制是否可以阻止对作用于表皮生长因子受体 (EGFR/ERBB1/HER1) 的药物的适应。在 BT474 和 SKBR3 乳腺癌细胞长期暴露于 EGFR 靶向小分子 (吉菲替尼、厄洛替尼) 以及 SW48 结肠癌细胞长期暴露于抗 EGFR 单克隆抗体西妥昔单抗后,分析了耐药性的发展。在所有情况下,用单剂量药物治疗小细胞群(~10 5 个细胞)最初会导致生长抑制,随后适应群体中增殖恢复并产生耐药性。然而,这种适应总是通过添加选择性 CDK8/19 抑制剂来阻止,即使此类抑制剂单独对细胞生长只有中等或没有影响。这些结果表明,将 EGFR 靶向药物与 CDK8/19 抑制剂相结合可能会延迟或阻止肿瘤对治疗产生耐药性。
